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Abstract

Demographic and medical history information obtained from annual South African

antenatal surveys is used to estimate the risk of acquiring HIV. The estimation sys-

tem consists of a classifier: a neural network trained to perform binary classification,

using supervised learning with the survey data. The survey information contains

discrete variables such as age, gravidity and parity, as well as the quantitative vari-

ables race and location, making up the input to the neural network. HIV status

is the output. A multilayer perceptron with a logistic function is trained with a

cross entropy error function, providing a probabilistic interpretation of the output.

Predictive and classification performance is measured, and the sensitivity and spe-

cificity are illustrated on the Receiver Operating Characteristic. An auto-associative

neural network is trained on complete datasets, and when presented with partial

data, global optimisation methods are used to approximate the missing entries. The

effect of the imputed data on the network prediction is investigated.
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Chapter 1

Background

Acquired Immunodeficiency Syndrome (AIDS) was first defined in 1982 to describe

the first cases of unusual immune system failure that were identified in the previous

year. The Human Immunodeficiency Virus (HIV) was later identified as the cause

of AIDS. Since the identification of the virus and the disease, very little has been

effective in stopping the spread. AIDS is now an epidemic, which at the end of

2003 had claimed an estimated 2.9 million lives. Globally, an estimated 37.8 million

people were living with HIV at the end of 2003, of which 4.8 million acquired the

disease that year. The worst affected region is Sub-Saharan Africa, which has 10%

of the world’s population, but contains 70% of all people living with HIV. The

epidemics have grown rapidly in all Southern African countries and South Africa

has a high prevalence rate of 21.5% [1]. Of all countries in the world, South Africa

has the highest prevalence of HIV/AIDS, followed by India.

Since AIDS removes people in the prime of their working and parenting lives from

society, the economic impacts are enormous. Development and growth is adversely

affected since productivity is lowered, incomes are diminished and poverty increases.

Quantitatively, the World Bank calculates that AIDS may now be costing 24 African

countries 0.5% to 1.2% of per capita growth each year [1]. All these factors in

turn discourage investment exacerbating the situation, which affects government

and business. Socially, health resources are stretched to capacity. The elderly and

children are left to provide income for families, and education is no longer a priority.

To effectively manage this epidemic, accurate information on prevalence, improved

understanding of the sociodemographic factors in which the epidemic occurs and the

relative impact of interventions is required to construct and improve behaviour and

treatment interventions. This is obtained by creating a model of the HIV epidemic.

More specifically, the aim of this study is to predict the HIV status of an individual,
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given readily available demographic data. Ultimately, this knowledge will be used to

construct health and social policies for HIV/AIDS prevention. Knowledge discovery

and data mining in HIV related demographic are to be used to obtain the model.

Artificial intelligence or machine learning techniques have been used successfully in

medical informatics for decision making, and are used in this study for data mining.

To successfully perform knowledge discovery, an understanding of the data and ap-

plication is necessary. Background information on knowledge discovery, HIV/AIDS

and artificial intelligence techniques for data mining is presented in the following

section; and the research question is defined in Section 1.5.

1.1 Knowledge Discovery

Knowledge discovery aims to uncover interesting, useful and novel patterns in data.

Data is a set of facts, and a pattern is an expression in a language describing the

facts in a subset of the facts. Data mining is the step in the knowledge discovery

process when the data is actually searched through, using different algorithms. The

steps of the processes are outlined below.

1.1.1 The Knowledge Discovery Process

These are the steps involved [2]:

1. Develop an understanding of the application, of the relevant prior knowledge,

and of the end user’s goals.

2. Create a target data set to be used for discovery.

3. Clean and preprocess data (including handling missing data fields, noise in the

data, accounting for time series, and known changes).

4. Reduce the number of variables and find invariant representations of data if

possible.

5. Choose the data-mining task (classification, regression, clustering, etc.).

6. Choose the data-mining algorithm.

7. Search for patterns of interest (this is the actual data mining).
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8. Interpret the pattern mined. If necessary, iterate through any of steps 1

through 7.

9. Consolidate knowledge discovered and prepare a report

1.1.2 Data Mining

The general goal of data mining is to uncover relationships within the data and to

predict outcomes. Data mining involves fitting models to or determining patterns

from data. The general algorithm for data mining consists of three parts.

1. The model: The function of the model and its representational form, i.e. the

data mining task

2. The preference criterion: The basis for which a model set of parameters is

given preference for the particular data set. This is usually a goodness of

fit function to the model. In terms of optimization, this can be seen as the

objective function to judge the quality of the fitted models on observed data.

3. The search algorithm: the algorithm for finding particular models and para-

meters, given the data, model and preference criterion.

Data mining functions, used to create the model can be grouped under the following

data mining tasks [3].

1. Exploratory Data Analysis (EDA): The goal of EDA is to explore the data

without having any ideas of what is being searched for. This is typically done

using interactive and visual techniques.

2. Descriptive Modelling: Descriptive modelling seeks to identify a model that

describes all of the data or the process generating the data. Descriptions can

describe different aspects of the data, such as the overall probability distribu-

tion (density estimation).

• Clustering: Partitioning the data into several clusters, or groups of data

based on similarity. The number of groups is determined by the data

itself.

• Segmentation: Grouping similar records into homogeneous groups. The

number of groups is determined by the researcher, as is often used in

marketing to define different customers.
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• Dependency modelling: Models that describe significant dependencies

between variables.

• Summarisation: provides a compact description for a subset of data.

• Sequence analysis: models sequential patterns like time series analysis in

order to model the states of the process generating the sequence or to

extract trends and deviation over time.

3. Predictive Modelling: The goal is to develop a model allowing one variable to

be predicted from known values of other variables. If the predicted value is

categorical, the function is classification, and if the predicted value is quantit-

ative, the function is regression.

• Classification: classifies the data into predefined categories: in this case,

HIV positive and negative

• Regression: maps a data item to a real valued prediction variable

4. Discovering Patterns and Rules: Discovering association rules describes rela-

tionship associations between different attributes, these types of rules indicate

a statistical relationship between the attributes, but does not imply a causal

effect. Rules are generated through the extraction of classification rules from

the data.

5. Retrieval by content: The user has a pattern and wants to find similar patterns.

The pattern could be an image or text for example, like searching for keywords

in a web page.

Data Mining Algorithms

Numerous soft-computing algorithms exist for data mining, including: neurofuzzy

computing, genetic algorithms, neural networks, rough sets, decision trees and hy-

bridizations. The choice of algorithm is based on the data mining task, as different

algorithms are better suited to different tasks.

1.2 HIV and AIDS

In order to identify the risk factors contributing to HIV infection, it is necessary to

understand the disease, how it operates, is transmitted and diagnosed.
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1.2.1 Definition

HIV is a retrovirus that infects cells of the immune system, such as CD4 cells and

macrophages, and then destroys or impairs their function [1]. CD4 cells organise

the body’s overall immune response to foreign bodies and infections.

Immune deficiency arises from the progressive depletion of the immune system

through this infection. Since the immune system is responsible for fighting off in-

fection and cancers, cellular immune deficiency makes individuals more susceptible

to opportunistic infections such as pneumocystis carinii pneumonia, toxoplasmosis,

systemic and oesophageal candidiasis, generalized herpes zoster, cryptococcal men-

ingitis, and to cancers such as Kaposi sarcoma.

1.2.2 Mode of operation and course of infection

First the virus penetrates the CD4 cells and copies the cells DNA to ensure that it

cannot be identified and destroys the immune system. The virus replicates many

times within the cell, and these new particles destroy the CD4 cell when they emerge.

Each of the new viruses infects other cells. During the early stages of infection,

many cells are infected and the number of virus particles in the body is high. The

HIV status cannot be detected through tests, as insufficient antibodies have been

formed, and this is called the window period. After this primary acute infection

a prolonged period without obvious symptoms follows, later the body experiences

severe immunodeficiency resulting in secondary opportunistic infections and cancers,

the major causes of death in AIDS patients.

1.2.3 Methods of transmission

There are three main methods of transmission:

• Sexual contact

• Contaminated blood: sharing of contaminated needles in drug injection; shar-

ing infected blood through blood transfusion

• Mother to child transmission during pregnancy, childbirth and breastfeeding

The predominant mode of transmission of HIV is sexual. According to [1], three

factors influence the biological probability of transmission:
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Type of sex: Anal intercourse carries a greater risk than vaginal intercourse, and

receptive anal sex is more risky than insertive. The probability of HIV transmission

is higher if there are lesions, such as would arise from rape and rough sex. The virus

tends to be more easily transmitted from males to females, and the risk of male to

female transmission is higher in girls younger than 16, compared to older women

before the menopause. This higher biological vulnerability could be due to the

immaturity of the genital tract and cervix. Risk of transmission of the virus through

oral sex is small, but this is increased if there are abrasions in the mouth. Stage

of illness: HIV infected individuals are more infectious during the earliest phase of

infection before antibodies are produced, and at the later phase of the disease when

the immune system is unable to combat the virus. Sexually transmitted disease: A

person with an untreated sexually transmitted infection (STI) is, on average, six to

10 times more likely to pass on or acquire HIV during sex. An STI means there is

more chance of broken skin or membranes allowing the virus to enter or leave the

body.

1.2.4 Diagnosis of HIV and AIDS

Clinical Diagnosis

The clinical diagnosis of AIDS is difficult, as detection of HIV is limited in the early

stages of the infection. Usually, a patient is suspected of AIDS when patients exhibit

certain symptoms and suffer from opportunistic infections

Laboratory Diagnosis

It is possible to detect the HIV antigen (the virus itself) during the period when

there are high levels of circulating virus particles, but the period is short, and the

level of antigen declines until it is undetectable. Antibodies in the blood are usually

detected as evidence of the virus, as they are cheaper and easier to detect than the

virus itself. This can only be done by the current tests at the end of the window

period. The two primary blood tests are the enzyme linked immunosorbent assay

(ELISA) Test, and the Western blot assay used to confirm a positive ELISA test

result.

The accuracy of diagnostic tests are measured according to sensitivity and specificity.

High sensitivity indicates that the test is able to detect the presence of antibodies,

i.e. minimising false-negative results. On the other hand, a test with high specificity,
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identifies all negatives correctly, producing no false positives. There is a margin of

error, so the tests must be selected according to the different purposes, and used in

different combinations.

1.2.5 Treatment

There is currently no treatment for eradicating the virus, but the existing treatments

are able to control virus replication causing a reduction in HIV virus load in the

blood. Such treatments are a combination of different antiretroviral drugs, known

as Highly Active Antiretroviral Therapy (HAART).

1.2.6 Social and behavioural determinants of HIV

Circumstances such as poverty, low social status, inequality, gender discrimination,

discrimination, marginalisation and criminalisation have been identified as increas-

ing vulnerability to HIV infection [1]. These circumstances reduce or deny a persons

access to HIV information, health services, means of prevention and support. Wo-

men in particular are a vulnerable population, in Africa, women are being infected

at an earlier age than men, and more women are infected with HIV than men at

all age levels, but especially in the group 15-24. In South Africa, two young women

are infected to every young man [1]. The factors known to increase the risk of HIV

infection among females in South Africa include the low social status of women and

economic dependence on men, since these factors affect womens capacity to determ-

ine their sexual lives, with sexual decision-making being constrained by coercion and

violence. Economic constraints may lead to prostitution or sex work [4].

1.3 Existing AIDS Models and HIV studies in South

Africa

1.3.1 HIV statistics

Although HIV statistics should ideally be collected via community based serosurveys,

only a few of such surveys have been carried out, due to financial, logistic and ethical

considerations [5]. Many countries prefer sentinel surveillance systems that monitor

the population anonymously over time and the most common sentinel is pregnant

women [5]. Thus, the most common source of HIV statistics is from antenatal clinics.
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Reasons for this method are that antenatal clinics are found in most parts of the

world, so they provide a common basis on which to compare regional and national

statistics [6]. Two main measures of HIV are HIV incidence and prevalence. The

HIV incidence rate is the percentage of people who are uninfected at the beginning

of the period who will become infected over the twelve months [7]. Incidence is thus

the number of new infections, and can be used as a measure of the effectiveness of

preventative strategies, like education. HIV prevalence is given as a percentage of

a population. It is the proportional number of people currently infected with HIV.

This figure often is not a true reflection of the situation, since in developing countries

prevalence is a measure of infection among people who have access to health care,

such as antenatal clinics. Reported figures indicate an actual positive result, but

it is difficult to deduce trends over time as there is often a lag in the collection of

figures at a central agency. Estimates vary depending on the statistical methods

used to produce them, as well as the data on which they are based.

1.3.2 National Antenatal and Syphilis sero-prevalence surveys

In South Africa, antenatal and seroprevalance studies have been conducted annually

since 1990 to measure HIV and syphilis prevalence: they form the main source of

data for tracking the progression of the HIV/AIDS epidemic in the country [8] [9].

The objective of the survey is to estimate HIV and syphilis prevalence among preg-

nant women attending public sector antenatal clinics and describe HIV and syphilis

trends in terms of time, place (province) and age among pregnant women. The data

can thus be used to track the epidemic in the different provinces of South Africa.

Limitations of the study are that only certain sites were selected for participation

in the study. A second limitation of the study is that the use of public sector health

care facilities excludes women who utilise private health care facilities. The most

recent survey was conducted in October 2003 by the Department of Health of South

Africa [9]. Quality assurance is the responsibility of the National Institute for Com-

municable Diseases (NICD) of South Africa performing external quality control of

the HIV prevalence testing.

The survey is conducted every year during October, and all pregnant women at-

tending antenatal care for the first time during the current pregnancy are eligible

for inclusion in the survey. Participation in the survey is voluntary and the study is

anonymous, cross-sectional and unlinked. Selected sites in all nine provinces of the

country participate in the study. Demographic details such as race, age, education,

gravidity, parity and fathers age are collected at the clinics, and a blood sample is
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taken. Each sample is tested for HIV prevalence using one ELISA at participating

laboratories, Rapid Plasma Reagin (RPR) [10] is used to test for syphilis. Samples

that test positive for prevalence are then tested for incidence. All the results in

the province are sent to the provincial co-ordinator for second data entry and veri-

fication. Provincial data is then sent to the Epidemiology directorate, where it is

re-checked, cleaned and merged into a single [9] database.

1.3.3 HIV models

The following organisations have developed models: Statistics South Africa, Actu-

arial Society of South Africa (ASSA), UNAIDS, Human Sciences Research Council

and the Department of Health. There is a wide range of estimates for both the

number of people infected with HIV in 2004 [7], and the HIV prevalence rate in the

total population of 2004, as seen in Figures 1.1 and 1.2.

Figure 1.1: Number of people infected in 2004

The models differ because of the sources of data used to construct the models as

well as the assumptions made. Two major problems are the differences in projec-

ted population which affects the prevalence, and the generalisation by projection

of antenatal survey data onto the general population. A method for adjusting is

presented in [5].
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Figure 1.2: HIV prevalence rate in total population in 2004

1.3.4 Demographic, behavioural and social risk factors for HIV

A few national population based surveys have been conducted to determine beha-

vioural and social factors influencing the prevalence of HIV in South Africa. These

are: the South African African Health Inequalities Survey (SAHIS 1994), the South

African Demographic and Health Survey (SADHS) (Department of Health 1998b),

and the Human Sciences Research Councils (HSRC) surveys (1997, 1999, 2001) [4].

Behavioural factors such as condom use is related to different demographics, but

these studies do not examine the relationship between behaviours and HIV sero-

status.

The most comprehensive population-based survey is the Nelson Mandela/HSRC

Study of HIV/AIDS carried out in 2002, which provides more accurate HIV-related

sexual behaviour risk profiles. The effects of race, age, locality, province, history

of diagnosis of STI, and education levels are investigated. The national prevalence

was significantly higher among Africans in years 2000 - 2003 than any other race

groups. Free State, Gauteng and Mpumalanga have the highest HIV prevalence in

South Africa. People living in informal urban areas were significantly more likely

to be HIV positive than those living in urban formal areas. Those living in urban

formal areas had a significantly higher prevalence when compared to residents of

farm and tribal areas. There is no simple relationship between HIV infection and
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levels of education. School attendance may increase access to both information

and potentially to prevention interventions. However, the improvements in socio-

economic status and lifestyle changes that go with higher educational attainment

may be associated with behaviours that increase the risk of HIV infection [4].

International studies have identified key behavioural factors such as age, condom

usage, median age at first sex, and knowledge about AIDS [11]. Risk factors in-

fluencing prevalence are related to the risk behaviour of the male partner: marital

status, having multiple sexual partners, having a male sexual partner who drank

alcohol or who had higher income [12; 13].

1.3.5 Predicting HIV status from non-serological information

Previous studies, [14; 15] suggest that it is infeasible to predict HIV status using

non-serological information.

Location Year Model Factors Percentage Accuracy

True False

Positives Negatives

Kenya

[14]

2000 Poisson

Regression

Anaemia, malarial

paristaemia, history of

being treated for va-

ginal discharge, fever,

alcohol consumption

74 52

Congo

[15]

1992 Logistic

Regression

age, history of blood

transfusion and/or

hospitalization, dis-

trict of residence,

duration of the rela-

tionship, number of

living children, and

number of deceased

children.

80 50

Table 1.1: Results from HIV prediction studies using non-serological information

A study in Zaire [16] performed on 6312 women between the ages of 15 and 45

years using a combination of factors modelled by logistic regression proved that
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only a model which included indicators of present illness with AIDS/HIV-related

symptoms (chronic fever, diarrhoea, or profound weight loss) was predictive of HIV

serostatus.

1.4 Neural Networks as statistical tools for medical re-

search

This section introduces the use of neural networks in the medical field in general, as

well as their suitability for classification and regression. More detailed information

regarding the structure and functioning of neural networks is presented in Chapter

2.

Artificial intelligence has been used in medicine for the clinical functions of diagnosis,

prognosis and survival analysis, and decision support. It has been used in a wide

variety of medical domains such as oncology, critical care, tuberculosis, cardiovas-

cular and renal transplantation. Artificial Neural Networks (ANNs) perform well in

pattern recognition, and are suitable for signal processing (EEG, ECG, and haemo-

dynamic signals), as well as image processing (mammography, chest radiographs,

tomography, nuclear medicine imaging, magnetic resonance). A common task in

medicine is thus classification using predictive models.

1.4.1 Neural networks versus polynomial regression

Nonlinear regression requires a polynomial function to approximate the model and

a major difficulty is selecting the order of the polynomial (often done by guessing).

As the number of independent variables increases, the number of possible regression

models becomes intractable. Linear models are easy to construct in linear regression

but training takes a long time, and offers no advantage over the calculation by Fish-

ers linear discriminant, or other statistical methods. The interpretability of neural

networks has often been criticised since none of the coefficients can be interpreted

as can be done with regression models.
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1.4.2 Neural Networks for classification and regression

The major strength of neural networks in modelling multidimensional spaces, is their

ability to scale with increasing dimensionality of the data. The ability of a polyno-

mial to model a non-linear function is limited by the number of terms in it, and hence

the order of the polynomial allows it to model higher dimensions. To accurately de-

termine the numerous parameters that would arise in a high order polynomial, large

data sets would be required. In contrast to polynomials, which use one function to

model the relationship, neural networks use superposition of many functions of a

single variable each. These functions are known as the hidden functions, and adapt

as the complexity of the model grows, not simply with dimensionality.

Additionally, for the case of classification, the outputs of a neural network can be

interpreted as posterior probabilities, provided the error function used to train the

network is chosen appropriately. This property is explained in detail in Section 4.2

Chapter 4.

1.4.3 Alternatives to neural networks for classification

Tree models

The space spanned by the input variables is partitioned recursively to maximise

a measure of class purity. Although they are very flexible and can handle mixed

variables, their sequential nature can lead to suboptimal partitions of the space of

the input variable.

Support Vector Machines

Support vector machines implement a linear decision surface that separates data

in an extended measurement space. This linear decision surface is equivalent to

a nonlinear decision surface that separates the data in the original measurement

space [3]. The function used to separate the two classes is called the margin, and it

attempts to optimise the location of the linear decision boundary such that the best

possible generalisation performance is obtained. This is an optimisation problem

which can be slow, as it requires O(n2) storage and O(n3) time to solve [3].
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Artificial intelligence methods in AIDS research

Despite the numerous applications of artificial neural networks to classification in

medicine, very little attention has been made to the HIV/AIDS prevention and

planning [17]. Artificial neural networks have been used to classify and predict the

symptomatic status of HIV/AIDS patients c̃iteLee:2001pn. The data used were all

the complete entries from a publicly available AIDS Cost and Services Utilization

Survey performed in the U.S. A multilayer perceptron, with 15 linear inputs and 3

hidden logistic nodes and one output, was trained using 200 epochs with a learning

rate of 0.1 and momentum of 0.1. 1026 cases were used for training and 667 HIV

cases were used for testing. The inputs are: sex, race, exposure rate (homosexual,

IV drug user, heterosexual), medical records (total number of patient admission,

total number of inpatient nights, total number of ambulatory visits, total number of

emergency room visits, total number of hospital clinic visits, total number of private

physician visits). The output is HIV status or AIDS status. The best accuracy

obtained was 587 correct (88%).

A study was performed to predict the functional health status of HIV and AIDS

patients defined as well or not well, using neural networks [18]. The inputs were

medical care access, such as number of emergency room visits and inpatient nights.

Most other applications of neural networks in AIDS research are in bioinformatics

pertaining to modelling of the virus on a molecular level, such as the prediction of

HIV-1 Protease Cleavage Sites .

1.5 Problem statement

A classification system is to be developed using neural networks. This involves the

selection of relevant parameters and optimisation of the neural network architecture

to be able to classify an outcome in the given data. The application selected for this

study is HIV classification using demographic factors, and the developed algorithm

should be applicable to any complex system with sufficient data.
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1.5.1 Objectives

Classify HIV status

The aim of the study is disease risk analysis, and the primary objective is to use arti-

ficial intelligence methods, namely, neural networks to perform knowledge discovery

and data mining on HIV clinical and demographic data, resulting in a classifier of

HIV status of a patient based on demographic inputs.

Incomplete data

A major problem with using neural networks is the requirement for a complete set of

data. Medical data often contains many missing entries, and the secondary objective

of the study is to replace the missing data. A method for missing data imputation

was developed by Abdella and Marwala [19], and this is to be used to complete the

data set. The effect of missing data (number of entries missing, the nature of the

variables that are missing) on the prediction accuracy was investigated.

1.6 Overview of Approach

For the classifier, a multilayer perceptron was trained using the Bayesian framework,

and a Genetic Algorithm was used to obtain the neural network architecture para-

meters. The missing data optimiser consists of an auto-associative neural network

and the problem of minimising the error between the initial guess and output was

optimised with Particle Swarm Optimisation.

1.7 Organisation of the Remainder of the Report

Background and general theory necessary to understand the design of the system

is covered in Chapters 2 and 3. As mentioned in the previous section, there are

two distinct parts to the study: classification and approximation of missing data.

Both parts are performed by neural networks. A background on Artificial Neural

Networks is presented in Chapter 2, with an explanation of the design and training

of the different types of neural network architecture. This work focuses on the use

of Multilayer Perceptrons, as they proved to be the most successful architecture.
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Stochastic optimisation methods were used in each part of the study in different con-

texts: firstly to select the parameters for the design of the classifier, and secondly, in

the actual implementation of the missing data estimator. The methods implemented

are Genetic Algorithms and Particle Swarm Optimisation, detailed in Chapter 3.

The actual design and reasoning for the approach taken follows in Chapters 4 and

5. The theory behind using neural networks for classification and their probabilistic

interpretation is given in Chapter 4. Chapter 5 contains the design of the missing

data system, with an investigation into different optimisation methods. Implement-

ation and the results obtained for both parts is presented in Chapter 6. This is

followed by a review and conclusion in Chapter 8.
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Chapter 2

Artificial Neural Networks

The artificial neural network (ANN) originated as a model for biological neural net-

works. Neural networks are viewed as a computational method of representing the

non-linear functional mapping of an input to an output in this paper. In classi-

fication, they are function approximators, where the function approximated is the

probabilities of membership to classes as a function of the input variables. Neural

networks are thus used as predictive data models.

2.1 Overview

The functional performance of the network depends on three factors: the selection

of inputs, the network structure and the training of the network. The design and

training of the network involves presenting it with a set of corresponding inputs and

outputs, and training it to adapt to provide the outputs given a specific input.

2.1.1 Selection of Inputs

The number and type of input nodes is determined based on the nature of the prob-

lem and the data available. Inputs may be either binary, or continuous. There

should be sufficient input nodes to represent the information relevant to the prob-

lem. The same number and type of inputs are used for both architectures, as their

performance is compared.

17



2.1.2 Network Structure

Although there are many different ANN models, they all have the same basic struc-

ture. An ANN is a network of many simple processors (”neurons” or nodes), each

with an associated memory. The nodes are connected in layers, most commonly

three layers: an input layer, a hidden layer, and an output layer. The networks con-

sidered in this study are feed-forward: outputs of nodes in each layer are connected

to nodes in the next successive layer. No information is fed back from the outputs

to the input layers. Additionally, the networks may be fully connected: all nodes

are connected to all other nodes.

2.1.3 Artificial neurons

Each node receives information from many other nodes, and the multiple signals

are combined to compute the single output associated with each node. Memory is

implemented by way of the connections that connect the neurons to each other, and

these carry numeric information. Each neuron receives data from another neuron or

the information source, processes the data, and the output is then sent to the next

neuron. This result may then be processed by the next neuron. In this way, neural

networks are a parallel computational method. Due to the nature of the structure,

the internal components are parallel, thus multiple neural networks can be combined

in the same fashion.

2.1.4 Training

The major strength of neural networks is that they are able to model data, mapping

the interconnections between the given inputs and outputs so that it is unnecessary

to have knowledge of the exact relationship. The form of the mapping is governed

by the number of adjustable parameters. Neural networks learn by example, and if

trained properly, are able to generalise and extend the knowledge to samples that

are unseen. Training is the process of adjusting the weights of the connections

according to the data. This adjustment can either take place after one example

is presented to the network (online training), or after the entire set of examples

has been presented to the network (batch training). The training method depends

greatly on the structure of the network and radial basis functions are trained in a

very different way from the way multilayer perceptrons are trained.
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2.2 Multilayer perceptrons

The most widely used neural network architecture is the multilayer perceptron. The

multilayer perceptron structure provides a non-linear mapping from a real-valued

input vector x to a real valued vector y. It can thus be used as a non-linear model

for both regression as well as classification, depending on the interpretation of the

output(s). The functionality of the MLP is based on its multi-layer structure and

activation functions. The main idea in MLPs is that the input vector is successively

modified through multiplication by weight matrices in the different layers, and the

products are transformed by non-linear activation functions.

2.2.1 Network Structure

The architecture of the MLP consists of an input layer, hidden layers and an output

layer, and this is illustrated in Figure 2.1. It has been proven that a single hidden

inputs outputs

bias bias

hidden units
xn

x0

yn

y1

Figure 2.1: Multilayer Perceptron

layer feed-forward neural network is capable of approximating uniformly any con-

tinuous multivariate function to any desired degree of accuracy, provided that the

number of hidden units is sufficiently large [20; 21]. A network with no hidden

layer, that is, with only one layer of nodes with activation functions is sufficient for

two class classification, only if the data points are linearly separable. This network

is unfeasible, as for a set of N points in d dimensional space, a network with N/d

nodes is needed to correctly separate the points into two classes [21].
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Connections and weights

The inputs are fed directly into the input layer, and each input is connected to

every node in the hidden layer via a feed forward connection. The output from each

hidden node is connected to every output node. Shortcut connections can exist, but

in this study they are not considered. Connections that connect one layer to the

preceding layer are only found in recurrent neural networks, where the outputs are

fed back as inputs. Each connection has a a weight which is a scalar value that is

multiplied by the signal at the origin of the connection.

Neurons

Consider one neuron. The signal this neuron receives consists of the inputs directly

connected to the neuron, and each of these inputs is multiplied by the weight con-

necting it to the neuron. These products are then summed to form the activation

at the neuron, which will either cause the neuron to fire, or produce no signal. This

is achieved mathematically with an activation function. Non-linearity is introduced

to the system through the activation function, which is non-linear.

2.2.2 Mathematical Function

Every hidden node has an associated activation due to its weighted connections to

each input xi. There is also a bias bj at each hidden node, thus the first layer

activations are defined in [21] by:

aj =
N∑

i=1

w
(1)
ij xi + b

(1)
j (2.1)

Where i is the number of inputs and j is the number of hidden nodes.

The significance of the number of hidden nodes in a classifier is that each hidden

unit divides the input space with a hyperplane, so that activation z = 1 is on one

side of the hyperplane, and z = 0.

These activations are transformed by a non-linear activation function in the hidden

layer. There are many possible choices for non-linear activation functions, such

as threshold functions and linear functions, but in this study sigmoidal units are

used. Sigmoidal functions are S-shaped, mapping the interval (−∞,∞) onto the
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interval (−1, 1)) for hyperbolic tangent functions, and onto the interval (0, 1) for the

logistic sigmoid function. They are differentiable, which is a necessary property for

back-propagation, and are able to represent smooth mappings between continuous

variables. These types of functions are used as activation functions as they are

monotonic. In the hidden layer, hyperbolic tangent functions are used as they are

equivalent to the logistic function through a linear transformation, but in addition to

all the properties offered by the logistic function, also give rise to a faster convergence

of training algorithms than the logistic functions [21]. The outputs of the hidden

nodes zj are thus:

zj = tanh(a
(1)
j ) (2.2)

For a two class classifier one output node is sufficient, so there is only one activation

at the second layer. The outputs from the hidden layer are connected via weighted

connections to the output node and biased to form the second layer activation [21]:

a(2) =
h∑

j=1

w
(2)
j zj + b(2) (2.3)

This second layer activation is transformed by the logistic output activation function,

as it operates in the range 0 to 1, and it allows the output to be given a probabilistic

interpretation, since it is derived using Bayes theorem to represent the posterior

probabilities of membership to classes. Additionally, the sigmoidal function is able

to represent both non-linear functions as well as linear functions (if |a| is small).

y ≡
1

1 + e−a(2)
(2.4)

The output y, is a continuous scalar bounded between 0 and 1, thus to use y as

the indicator of class membership it needs to be converted to binary values using a

threshold.

Since the resultant model is non-linear, when applied to classification, the decision

boundary between the classes produced by the network is also non-linear. This is

an advantage over most other classification methods such as trees which have linear

decision boundaries. Non-linearity allows for highly flexible decision surface shapes,

but since non-linear estimation of the parameters is not straightforward iterative

techniques are used (training). The process of obtaining the weights that produce

the model is called training.
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2.2.3 Training

The weights and biases that result in the optimal decision surface are determined

through the minimisation of the error produced by the network. The error function

is the sum of squares error in the target outputs t, and those produced by the

network y. The optimisation methods used are gradient based, and these require

the derivative of the error function with respect to the weights. Sigmoidal activation

functions are used because they are differentiable, and this is a necessary requirement

in error back-propagation. The error back-propagation algorithm solves for the

weights through the propagation of the errors backwards throughout the network.

Training begins with the random initialisation of the weights and biases, and these

values are adjusted until the error converges, or until a certain number of training

cycles has been exceeded. Since the target outputs are used as a reference (in the

calculation of error), this method of learning is referred to as supervised learning.

2.2.4 Decision Surface

The output activation function determines the decision surface in the input plane,

in this case a logistic output activation function is used, since the range is 0 to 1, a

typical value for a threshold would be 0.5, and thus y = 0.5 defines a decision surface

in the output space that can separate the classes. Every node in the hidden layer

defines a decision plane (or hyperplane) in the input space, and the hidden nodes

combine to form a non-linear decision surface. A network with only hidden layer

cannot generate arbitrary decision boundaries, however any given boundary can be

approximated arbitrarily closely if the activation functions are sigmoidal.

2.2.5 Generalisation

The aim of the network is to capture the statistical properties of the data to be able to

make accurate predictions for new inputs, that is, to generalise. Poor generalisation

can either arise if the network is not sufficiently complex and is unable to accurately

represent the process, or it may be too flexible, and be fitted to the noise of the

training data, or the data is too difficult to be mapped using neural networks.

There needs to be an optimisation between these two points, to find a model that

represents the data accurately enough to correctly predict unseen data, and this is

done by controlling the complexity of the model.

The first method is to control the complexity through the structure of the network. A
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simple model has fewer parameters that can be adjusted. In multilayer perceptrons,

the number of hidden nodes is proportional to the complexity of the network, since

the more nodes there are, the more weights and biases there are to adjust. Reducing

complexity equates to reducing the number of hidden nodes, and this is done either

by starting with a small number of nodes and adding more, or by pruning the

network of hidden nodes to a smaller number of them.

The second method is regularisation, which aims to have smoother network mappings

by adding a penalty to the error function. A weight decay can be added to the error

function so that the weights are encouraged to be small as training progresses. Small

values of weights mean that the multilayer perceptron represents a linear mapping,

since these values correspond to the central region on the sigmoidal function. Early

stopping is an alternative approach to weight decay: it ensures that the network

does not over-train, and prevents over-fitting to the training data. In this method,

cross validation is employed: the network is trained on a training data-set, and the

error on another set, the validation set is compared to this error in training data.

When the validation error starts to increase, the network has become over-trained,

and training is stopped.

2.2.6 Radial Basis Function

The major difference between radial basis function networks and MLPs is that the

activation of the hidden unit is determined by the distance between the input vector

and a weight vector. Their major attractive feature is that they train much faster

than MLPs, and this is attributed to the two stage training procedure.

Network Structure

The structure of the radial basis function network is similar to that of the MLP,

however instead of hidden nodes with activation functions, the RBF has basis func-

tions. Also, there is usually only one hidden layer in an RBF network. Like the

MLP, the nodes are feed-forward, fully connected and have weights and biases.

Mathematical Function

Radial basis functions use a combination of supervised and unsupervised learning

techniques. Learning in the hidden layer is unsupervised, using methods like k-means
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clustering. These clusters are used as the starting points from which supervised

learning in the outer layer takes place. A least mean squares method is used for this

stage of training.

There are several types of basis functions, but the most common is the Gaussian

φ(x) = exp

(
−

x2

2σ2

)
(2.5)

where σ controls the smoothness of the properties of the interpolating function. The

parameter σ is the width parameter, and the value for it is determined in training.

This function is localised, as |x| → ∞, φ → 0

The thin plate spline function has also been used, and can be written as follows:

φ(x = x2ln(x)) (2.6)

The output is represented as the sum of the product of the basis functions with the

biases added:

y(x) =
M∑

j=1

wjφj(x) + w10 (2.7)

In a similar way that the biases were absorbed in the MLP as another input fixed

at 1, the biases can be absorbed into the summation as another basis function with

the activation set to 1.

The basis function is

φj(x) = exp

(
−
|x − µj |

2

2σ2
j

)
(2.8)

where x is the d-dimensional input vector, µj is the vector determining the centre

of the basis function φj

Decision Surface

The activations of the basis functions can be interpreted as the posterior probabilities

of the presence of the corresponding features in the input space, and the weights can

be interpreted as the posterior probabilities of class membership, given the presence

of features. Instead of the hyper-planes in the MLP approach to classification, there

are hyper-spheres separating the classes in the RBF.
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Training

Training an RBF takes part in two stages. The first stage is an unsupervised learning

procedure, where the input data set is used to determine the parameters of the basis

functions. These parameters are the basis function centres µj, and the widths of the

basis functions σj . Only the input data is used, and no target information is used.

The parameters are set such that the network models the unconditional data density.

Selecting the centres can be done in a few ways: the simplest is to randomly select

data points as the basis function centres. In this study, a more advanced method

of clustering the data, and using the clusters as centres was implemented. An

Expectation Maximisation algorithm was used to train a Gaussian mixture model.

In the second stage, with the basis functions fixed, supervised learning takes place,

to optimise the second layer of weights. This optimisation is a quadratic problem,

and the values are solved for using linear algebra.

It is possible to train a RBF network using a single stage supervised learning method

using non-linear optimisation algorithms as is done in training of MLPs. To use this

method, the error as well as the derivative of the error function are required, and

these are typically computationally expensive.

Generalisation

In a similar way that limiting complexity improves generalisation in MLPs, the

network complexity is used to improve generalisation in RBFs. A reduced number

of hidden nodes, or in this case, basis functions, limits the networks ability to model

the data exactly, and a smoother mapping is achieved

2.3 Bayesian Regularisation Training for Neural Net-

works

2.3.1 Background

The most difficult and time consuming aspect of neural network design is the model

complexity. The optimal number of degrees of freedom is controlled by the architec-

ture in the number of hidden nodes, and modelling ability depends on the training
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data (the number of training samples, as well as the noise in the data) [22]. Stand-

ard neural network techniques use an experimental method to compare performance

on the validation set to optimise model complexity, which is computationally intens-

ive. Since all parameters affect the modelling ability of the network, the effect of

any single parameter cannot be identified as each individual effect cannot be isol-

ated. The presence of the validation set also reduces the amount of data available

for training and testing.

The aim of neural network training is to adjust the weights such that when presen-

ted with an unseen set of inputs characteristic of the underlying function, the neural

network will be able to predict the output. Conventional neural network training

produces a single set of weights, according to maximum likelihood, to make predic-

tions. Instead of a particular weight vector, the Bayesian training method produces

a posterior distribution over network weights, and when a set of inputs is applied to

the network, a distribution over the outputs is produced. This predictive distribution

is informative of how uncertain the prediction is.

The Bayesian inference system handles the unknown degree of complexity by defin-

ing non-informative prior probability distributions that determine model complexity,

and the resultant model is an average of all model complexities weighted by the pos-

terior probability given the data sample [22]. The Bayesian framework allows the

model to have differing complexity in different parts of the model, by the grouping

of parameters to common hyperparameters. Analysis of regression results is possible

in Bayesian techniques with the posterior predictive distributions from which con-

fidence intervals can be calculated, and in classification, overconfident predictions in

areas of sparse data are avoided [23].

There are two approaches for selecting the network architecture. Neal argues that

there is no statistical need to limit the complexity of the network architecture in

the Bayesian implementation, so the approach is to use a general architecture with

many hidden units (in several layers or groups) controlled by hyperparameters [24].

In contrast, MacKay uses an evidence framework to choose between architectures,

which obeys Occam’s principle. The issue of model complexity is embodied in Oc-

cam’s Razor, the principle that states that simple models should be favoured over

complex ones [25]. The Bayesian evidence framework consists of the aspects model

comparison and selection, feature selection and the use of multiple neural networks,

and in this paper, it is this approach that is considered for the purpose of classific-

ation with neural networks.
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2.3.2 Probability Theory

Bayes Theory is used to calculate a conditional probability P (A|B,C) which is the

probability of A given the probability of B and C. The conditional probability is

also related to the joint probability of A and B:

P (A|B,C) =
P (A,B|C)

P (B|C)
(2.9)

The conditional probability does not mean that B and C are a prerequisite for A

to occur, instead, it is a measure of the probability A will happen, if B and C also

occur. For example, if A is the probability that a person has a disease, and B is

the person’s age, the P (A|B,C) is a number between 0 and 1 describing the chance

that the person has a disease, taking into account their age, and the model for the

disease and risk factors (C). When the extra information changes, we can adjust the

conditional probability according to Bayes theorem:

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)
(2.10)

In the context of learning from the data, the prior distribution is the probability

distribution over the network weights that define the assumed pattern in the data

being learned. After having observed the data, the opinion of the probability distri-

bution over the weights will change to the posterior distribution. This means that

weights that do not represent the data well will have a much lower probability, while

those that fit the data well will have an increase probability.

Model selection

Conventional neural network learning starts with an initial weight vector w0, and

results in a single weight vector w in weight space, close to the point of maximum

likelihood, or minimum error. This method is highly dependant on the training data

set, and any slight changes in this set or changes in the initialisation of the weights

results in a different optimum weight vector. In contrast, the uncertainty in the

value of weight vector values is taken into account in the Bayesian learning process.

An ensemble of possible solutions is considered, instead of simply considering one

best solution, and this is done using Bayes theorem and the conditional probability.

There are two levels of inference in model comparison, firstly, we assume that a

particular model is true, and infer values for the weights, given the data [26].

P (w|t, x,H) =
P (t|w, x,H)P (w|H)

P (t, x,H)
(2.11)
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This is equivalent to

PosteriorDistribution =
Likelihood × PriorDistribution

Evidence
(2.12)

The prior distribution over weight space is transformed to the posterior distribution

using the likelihood and evidence of the model, and with increasing training data,

the posterior ensemble becomes concentrated around the most probable value of w.

The prior distribution in this case, is the probability of the weights, given the model.

The maximum of the posterior is the weight vector with the maximum probability,

and this can be found with gradient methods [26]. Error bars and confidence

intervals can be approximated from the curvature of the posterior distribution, and

more details can be found in [26].

The second level of inference determines which is the most probable model given

the data, by obtaining the posterior probabilities of each model, as seen in Equation

2.13 [23].

P (Hi|D) =
P (D|Hi)P (Hi)

P (D)
(2.13)

where Hi is a model, and D is the data, consisting of w and t. We initially have

no information to differentiate one model from another, so p(Hi) is the same for all

models. The normalising constant, P (D) is independent of the models, so the model

with the highest posterior distribution is the model with the highest evidence (the

probability of the data given the model), and this quantity can be used to compare

different models.

The evidence is evaluated using Equation 2.14 [26]

p(D|Hi) =

∫
p(D|w,Hi)P (w|Hi)dw (2.14)

Training and regularisation

The previous sections discussed the model selection, and adjusting of weights without

details of the prior weight distribution.

p(w) =
1

Zw(α)
exp(−αEw) (2.15)

The purpose of Zw is to normalise the probability such that:
∫

p(w)dw = 1 (2.16)

thus

Zw =

∫
exp(−αEw)dw (2.17)
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Ew =
1

2
|w|2 =

1

2

W∑

i=1

w2
i (2.18)

where W is the total number of weights and biases.

The advantage of the Gaussian prior, is that it simplifies analysis, and the normal-

isation coefficient is just

Zw(α) =

(
2π

α

)W/2

(2.19)

Since α controls both weights and biases, it is termed a hyperparameter.

To define the likelihood function, a model for the distribution of target values for a

given input vector must be defined. In binary classification, the output y represents

the posterior probability P (C1|x), and the posterior probability of the other class

is P (C2|x) = 1 − y. For regression, a Gaussian noise model with zero mean and

constant inverse variance β is appropriate, but instead, for classification, a Bernoulli

random variable is used for the distribution. In classification, there is no equivalent

β hyperparameter. The posterior distribution is

p(D|w) =
∏

n

y(xn)t
n

(1 − y(xn))1−tn = exp(−G(D|w)) (2.20)

where G is the cross entropy error function, given by

G(D|w) = −
∑

n

tnlny(xn) + (1 − tn)ln(1 − y(xn)) (2.21)

The distribution is normalised since the targets have values 0 or 1, and the normal-

isation integral is a sum of terms:

exp(lny) + exp(ln(1 − y)) = y + (1 − y) = 1 (2.22)

ED(D|w, x) = −
N∑

n=1

tnlny(xn, w) + (1 − tn)ln(1 − y(xn, w)) (2.23)

The normalisation factor is the integral of exp(βED) as in 2.17.

The total error function is:

E = S(w) = ED + αEw (2.24)

The Gaussian prior distribution for the weights thus results in a cross entropy error

function with a weight decay regularisation term. Keeping α constant, as N the

number of training samples increases, the first term becomes more dominant and
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the second term insignificant. Hence, the maximum likelihood solution is a special

case of the Bayesian most probable weight vector, and is simply an approximation.

Substituting the likelihood and prior distributions into Bayes theorem equation, we

obtain the posterior distribution of weight values.

p(w|D) =
1

Zs
exp(−G − αEW ) =

1

ZS
exp(−S(w)) (2.25)

where

Zs(α) =

∫
exp(−G − αEW )dw (2.26)

Since the aim is to find the weights and the hyperparameters, the principle of mar-

ginalisation is used to integrate out all unknown parameters.

p(w|D) =

∫
p(w,α|D)dα =

∫
p(w|α,D)p(α|D)dα (2.27)

The evidence framework uses the Laplace approximation that p(α|D) is sharply

peaked around αMP [27].

p(w|D) ≈ p(w|αMP ,D) (2.28)

This hyperparameter αMP thus optimises the weight posterior probability, and can

be fixed to when making predictions.

The second approximation in the evidence approach is used when integrating p(w|α,D).

MacKay suggests a spherical Gaussian distribution around the mode of the posterior.

This approximation is local around a particular wMP based on a second order Taylor

series expansion.

S(w) ≈ S(WMP ) +
1

2
(w − wMP )T A(w − wMP ) (2.29)

where A is a hessian matrix of the error function S with respect to the weights.

In summary, the initial hyperparameter α is set to a small arbitrary value, to al-

low the network to find patterns in the data before regularisation takes place [28].

Training takes place using the usual optimisation algorithms with the aim of min-

imising the cost function. When the training error falls below a certain tolerance,

the hyperparameter is re-estimated, and thus the parameter is evaluated on line.

The network is incrementally trained, and the parameters are re-estimated, and the

cycle continues until a minimum tolerance is reached.

In this study, a single hyperparameter is used, which corresponds to the standard

global weight decay scheme [28]. Multiple hyperparameters are used when there
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is a need for different hyperparameters in the hidden and outer layer weights, or

biases. This need arises when the number of inputs differs greatly from the number

of hidden nodes.

Making Predictions

Unlike the distribution of α we cannot assume that the weight posterior is sharply

peaked around wMP , since the output function y(a) is logistic and not linear. The

prediction therefore cannot be assumed to be the most probable output. The output

in this study is the ”moderated output” defined by MacKay [29], and the derivation

follows. MacKay assumes that a is locally a linear function of the weights [29], with

a distribution given by 2.30 [27].

p(a|x̃,D) =

∫
p(a|x̃, w̃)p(w̃|D)dw̃ (2.30)

Assuming the weight posterior to have a Gaussian distribution with mean aMP and

a variance of

s2(x) = gT A−1g (2.31)

where g is the gradient of a with respect to the weights at wMP . Then using 2.30

the probability that an input vector x̃ belongs to class C1 is:

P (C1|x̃,D) =

∫
P (C1)p(a|x̃,D)da =

∫
f(a)p(a|x,D)da. (2.32)

which is analytically intractable, so using MacKay’s approximation becomes

P (C1x̃,D) ≈ f(κ(s)aMP ) (2.33)

where

κ(s) =

(
1 +

πs2

8

)−1/2

. (2.34)
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Chapter 3

Optimisation Algorithms

3.1 Genetic Algorithm

3.1.1 Background

Problem solving systems based on the principles of evolution and hereditary have

been developed over the past thirty years [30]. These systems consist of populations

of potential solutions from which certain individuals are selected based on fitness

of individuals, and the individuals are altered by genetic operators. Some examples

of such systems include: Evolution Strategies, Evolutionary Programming, Scatter

Search Techniques, Genetic Programming and Holland’s Genetic Algorithms [30].

Genetic algorithms, first proposed by Holland in 1975, are stochastic global optim-

isation methods of searching for a solution, typically in large search spaces where

classical techniques are insufficient [31]. They have proved to be powerful for multi-

variable optimisation when it is not possible or difficult to write the analytical form

of the error function in large multi-modal spaces. The process is based on Darwinian

evolution, so the terminology is borrowed from natural genetics.

The population consists of individuals or genotypes, often called strings or chromo-

somes. We consider each individual to have only one chromosome (although this

is not the case for many organisms), so one chromosome and thus one individual

represents a complete solution. Genes are the units that make up the chromosome,

each gene controlling a specific feature, character, and these features can have dif-

ferent possible states, called alleles. Chromosomes with the better characteristics

survive, thus successive generations of chromosomes improve in quality, as long as

the criteria for survival is appropriate [32].
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When applied to optimisation, each individual represents a solution to the prob-

lem and the evolution process on a population of individuals constitutes the search

through the space of solutions. Gradient based methods use the best solutions to de-

termine movement direction, in contrast, random searches explore the search space

ignoring the best solutions. The GA therefore combines the merits of both these

methods: exploration of the search space while exploiting the best solution. GA’s

are thus more robust than directed search methods.

Another advantage GA’s have over gradient methods is that they perform multi-

directional searches, as they maintain a population of solutions. Gradient based

methods iteratively improve a single point: a new point is chosen from the neigh-

bourhood of the initial point and becomes the current point if the value of the ob-

jective function improves. If the value does not improve, a different point is chosen

and tested. The success of the gradient based method therefore depends heavily on

the initial point, and it finds local minima only. No information regarding the rel-

ative error with respect to the global optimum is available in the gradient methods.

Additionally, information is formed and exchanged between the directions suggested

by the individuals.

3.1.2 Definition

The evolution program is a probabilistic algorithm which tracks a population of in-

dividuals at iteration t P (t) = xt
1, . . . , x

t
n. Each solution is encoded as an individual,

and is evaluated to give a measure of ”‘fitness”’. The next generation will contain

the more fit individuals of the current generation (chromosomes of the current gen-

eration are reproduced), and some individuals will be transformed by the genetic

operators, mutation and crossover, to form new solutions. The GA is thus fully de-

scribed by the following components: representation, method of creating the initial

population, evaluation function, genetic operators, and values for the parameters

that the algorithm uses [30].

3.1.3 Representation

Chromosomes can be represented by real numbers, permutations of elements, a list

of rules, or other symbols [32]. Float encoding is used in this study as it has been

proven that the real valued GA is an order of magnitude more efficient in CPU time

than the binary GA [30].
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3.1.4 Initialisation

There are various initialisation methods, but the algorithm can be tested by moving

from a randomly initialised population to a better adapted population, since the

final solution will have been created through search and recombination rather than

the initialisation procedure.

3.1.5 Evaluation Function

The optimisation algorithm operates on the fitness function, either maximising or

minimising it. The “fitness” quantifies the the quality of the solution, and this

is used to compare individuals. An important aspect is the normalisation of the

variables and hence the result of the evaluation function. The genetic algorithm is

sensitive to the normalisation technique, as if it stresses improvements too much,

it could promote the dominance of a single gene. Conversely, the fitness of bet-

ter individuals should clearly indicate the genetic superiority of these solutions, as

compared to weaker individuals. A second feature of the GA is that the algorithm

is independent of the the way in which the evaluation is performed, making it ro-

bust [31]. Compared to heuristic methods dependant on the domain and specific

to the situation, the GA is flexible. Individuals of the population are selected for

reproduction according to their fitness using a selection function.

3.1.6 Selection Function

Solutions with higher fitness are selected more frequently by the probabilistic se-

lection function. There are different versions of the selection function: roulette,

normalised geometric selection and tournament. Even though the roulette selection

method is random, each parents chance of being selected is directly proportional

to its fitness. Roulette selection sometimes emphasises superior chromosomes, and

they could distort the gene pool, since the population is finite. This is undesir-

able, a leading cause of premature convergence. Rank-based selection, normalised

geometric ranking in the study [30], tends to converge slowly with less premature

convergence and better gene pool diversity. The tournament selection does not use

probability, instead n individuals are selected, and the fittest individual of the tour-

nament is selected. The process is repeated until the required number of individuals

for the next generation is obtained.
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3.1.7 Genetic Operators

When two individuals are selected for mating, two genetic operations can be per-

formed on their chromosomes. “Crossover” mixes two chromosomes of the parents,

by cutting the chromosomes at random points along their length, and exchanging

the cut sections. This produces two new chromosomes, each having characteristics of

the parents. Both new chromosomes are placed in the gene-pool and either replace

poorer quality chromosomes, or are discarded. For the float-encoding of chromo-

somes there are 3 different crossover techniques: simple, arithmetic and heuristic.

Simple crossover cuts and exchanges two sections of the chromosome at a single

random point. Arithmetic crossover takes two parents X and Y and performs an in-

terpolation along the line formed by the two parents to produce two complimentary

linear combinations of the parents.

C1 = rX + Y (1 − r) (3.1)

C2 = rY + X(1 − r) (3.2)

Heuristic crossover creates two new individuals based on fitness. One child will

resemble the fitter parent, and the other will be a combination of the parents, but

will have more genetic material from the fitter parent. This is given by equations

3.3 and 3.4. Depending on the value of r, C1 could be infeasible, so a new value of r

can be generated, a maximum number of retries can be set, with C1 set to X if all

attempts fail.

C1 = X + (1 − r)Y (3.3)

C2 = Y (3.4)

“Mutation” alters one characteristic on the chromosome. It occurs on a very small

portion of the population. Without mutation, eventually all the solutions would

be exactly identical. Sometimes the mixing of chromosomes with different char-

acteristics results in a better solution, and mutation enables this to happen. One

variable is replaced with either: a uniform random number, a non-uniform random

number, the lower or upper bound, or all variables of one parent can be replaced

with non-uniform numbers. More detail can be found in [33]

3.1.8 Algorithm

Different solutions are encoded as individual chromosomes. and each different vari-

able is represented by a gene. The process of reproduction advances the species by
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producing members of the successive generation. At first, completely random solu-

tions are tried and evaluated according to a fitness function, and then the best ones

are combined using specific operators. This gives the ability to adequately explore

possible solutions while, at the same time, preserving from each solution the parts

which work properly.

At each iteration t a genetic algorithm maintains a population of potential solutions

(chromosomes), P (t) = xt
1, . . . , x

t
n. Each solution is evaluated using the objective

function to obtain a measure of its fitness. Selection of individuals for the next

iteration (generation) is based on the fitness, with preference given to the more

fit individuals. New solutions are formed by altering the chromosomes through

crossover and mutation.

The basic genetic algorithm is as follows:

1. Initialise population

2. Evaluate and select individuals for mating

3. Mate individuals to produce offspring

4. Mutate offspring

5. Evaluate offspring

6. Insert offspring into population

7. Evaluate stopping criteria, if satisfied return to 2 else proceed to 8

8. Finish

3.1.9 Parameters

• Encoding: binary or float representation of the chromosome

• Population size

• Maximum number of generations or stopping criteria

• Mutation: type and rate (number per generation)

• Crossover: type and rate (number per generation)

• Selection: method and probability of selecting the best
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Table 3.1: Particle Swarm Optimisation analogues

Optimisation Concept Particle Swarm GA

Potential solution Particle Chromosome

Objective Function Fitness Fitness

Aim Food location Fittest individual

Control parameter Velocity

While the GA is an attractive option for global optimisation, in some cases the GA

will be unable to find the optimal solution. Such instances are due to premature

convergence. If convergence occurs too rapidly, potential solutions in part of the

population are often lost [30] Although a more comprehensive search is possible with

infinite generations and individuals in the population, this is limited by computation

time and resources, and the limitation also affects accuracy of the solution.

3.2 Particle Swarm Optimisation

3.2.1 Background

Particle swarm optimisation (PSO), a population based stochastic optimisation tech-

nique, originated from the intent to graphically simulate a flock of birds, and the

motive for this simulation was to model human social behaviour. The algorithm,

first proposed by Kennedy and Elberhart, is related to genetic algorithms and evol-

utionary programming [34]. The first models represented the dynamics of a flock of

birds in search of food, where the most effective strategy for the birds to find the

food is to follow the ones nearest the food. To do this, the models initially only

represented the velocities of the birds, and as they progressed, began to include

memories of the best position of the individual as well as the group.

The hypothesis for the success of the flock is that individual members can benefit

from the previous experience of all other members of the group during the search

for food. This sharing of information provides the group with a greater collective

advantage than the disadvantage per individual due to competition, and is an evolu-

tionary advantage. After simplification of the concept, the flock terminology became

replaced with a swarm. The particle swarm optimisation method is similar to the

GA, and the optimisation analogues of the concepts are presented and compared in

Table 3.1.
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3.2.2 Algorithm

The swarm consists of particles that each represent a solution, and the positions of

these particles are randomly initialised. The aim is for the swarm to fly in the search

space, and accelerate toward the best solution, or food source. This is achieved by

adjusting the velocity of the particles as they explore the search space, to follow the

particle nearest the best solution. Each member of the swarm is initialised with a

velocity. The information known at each iteration is the present position, the best

position for that particle so far, and the best position attained by the group [34].

At each iteration, the position x of each particle is evaluated, and the velocity v is

updated according to the known information, as shown in equations (3.5) and (3.6).

The inertia weight w controls the impact of the previous history of velocities on the

current velocity. Larger inertial weights facilitate in global exploration (searching

new areas) while smaller inertial weights are used for local exploration. The optimal

weight balances the two types of searches, reducing the time required to find the

optimum.

ṽi
k+1 = wṽi

k + c1rand(pi − x̃i
k) + c2rand(p̃g

k − x̃i
k) (3.5)

Where v is the velocity, k is the iteration, i describes the particle, w is the inertial

weight, x is the position, and g is the index of the best particle of the swarm.

x̃i
k+1 = x̃i

k + ṽi
k+1 (3.6)

The pseudocode is as follows:

FOR each particle

Initialise particle

END

DO

FOR each particle

Calculate fitness value

If fitness value is better than best fitness value pbest

in history

set current value as the new pbest

END

Choose particle with best fitness value of all particles as gbest

FOR each particle

Calculate particle velocity according to (3.5)

Update particle position according to (3.6)
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END

WHILE maximum iterations or minimum

error criteria is not attained

Although crossover and do not exist in particle swarm optimisation, the concepts are

employed through the acceleration of each particle toward its best position as well

as the global best position. The biggest difference is that selection does not occur in

PSO, all particles stay in the swarm for the entire duration of the optimisation [35].

Particle positions are influenced only by their own history, and the best position of

the group. This is different from the GA, where individuals are directly influenced

by random members (the children are affected by the parents)

3.2.3 Parameters

Design parameters in particle swarm optimisation are: the number of particles,

the dimension of the particles (depends on the number of variables), the range of

particles (range of the variables), the maximum velocity, learning conditions and

the stop condition. The maximum velocity is the maximum change one particle can

take during one iteration, this is usually set as the range of the particle.
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Chapter 4

Classification as Statistical Pattern

Recognition

The goal of classification is to assign an object to a predefined group or class, based

on observed attributes related to the object [36]. The observed attributes ar-

ranged in a sequence constitute a pattern, thus the task of classification involves

pattern recognition. The ability to classify different objects lies in the fact that

there are enough differences in certain attributes to distinguish one class of object

from another. These differences are used to create different mathematical models

that represent the objects. The process of classification starts by taking the observed

information, and selecting the model that fits the observed data best. The class that

the models belongs to is the designated class [37].

The design of a classifier thus involves the development of the class representative

models, and of the algorithm that will correctly assign a model to an individual, given

the observed data. Each individual is represented by a feature vector x describing the

characteristics of that individual, and is assigned to to one of k classes, C1, . . . Ck.

The data on which the model is based contains examples of individuals, as well

as the classes to which those individuals belong. The output of the classification

system is assigned to the variable y. The classification model is therefore required to

map the inputs x1, . . . , xd to the output y. A mathematical function describes this

mapping, and since it cannot be explicitly determined, the data is used to determine

the parameters. This can be written as follows:

yk = f(x;w), (4.1)

where w are the mapping weights.

Instead of viewing classification as a functional mapping task, we can consider each

individual to be represented by a feature vector, and classification is the partitioning
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of the feature space into the regions representative of each class. Design of the

classifier is determining where to place the decision boundary to correctly separate

the different classes.

An important issue in statistical pattern classification, is generalisation. If the classi-

fier is designed using many features and few training samples, the decision boundary

becomes intricate and more fitted to the training data. While this will improve ac-

curacy of classification of seen examples (training data), when presented with new

unseen (test data), the classifier will be unable to predict the classification of the

samples. Generalisation refers to the ability of the classifier to correctly model the

underlying behaviour of the data so that it is able to classify unseen data. The trade

off in the design is between accuracy on unseen patterns and the simplicity of the

classifier.

4.1 Bayesian Decision Theory

The statistical approach to the problem of pattern classification taken in this study,

uses Bayesian decision theory. It is based on the assumption that the decision

problem is posed in probabilistic terms and that all relevant probability values are

known [37].

What probabilities are required? At the very least, given the data, the probability

of a particular sample belonging to class C1 is known. This probability is referred

to as the a priori probability, and reflects the prior knowledge of the likelihood of

class C1 occurring. The sum of the probabilities of all classes sums to one, and the

individual class prior probabilities are non-zero.

Additional information is gained when the actual sample to be classified is analysed.

The measurements of the sample (features) will contain information, which can

be used to adjust the a priori information to become the a posteriori information.

Consider a measurement x, t is a continuous random variable with a probability

distribution dependant on the class, P (x|C). Bayes rule is used to calculate the a

posteriori probability,

posterior =
likelihood × prior

evidence
(4.2)

To make a decision based on the information, a decision rule is followed. The
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rule is defined in such a way to minimise the cost of misclassification. This rule

is implemented mathematically by taking the features and partitioning the feature

space to regions where each region contains the vectors representing that particular

class.

4.1.1 Allocation Principles, or Decision rules

The Bayes Decision rule attempts to minimise the probability of error and hence

the cost of misclassification.

4.1.2 Discriminant Functions

One way of describing the method by which the feature space is divided, is by a set

of discriminant functions. Each class is represented by one discriminant function,

and the classifier assigns the vector input to the class corresponding to the highest

discriminant. Two class classification is a special case, and only one discriminant

function is required. Instead of calculating the discriminant for each class, and

assigning the class to the highest discriminant, one discriminant function calculates

the difference between the two discriminants.

g(x) = g1(x) − g2(x) (4.3)

4.2 Bayesian Classification with Neural Networks

In this study, we have a dataset consisting of different patterns, vectors in x, with

corresponding outputs, y. Artificial neural networks are used to obtain the functional

mapping between x and y, and supervised learning is used to obtain the parameters.

This process is the training of the networks, and is called supervised learning since

the data contains examples of known classification. The purpose of the classification

model is to design the decision surface to assign new inputs to one of many discrete

classes [38]. Another type of neural network classifier, not investigated here, uses

unsupervised training to perform clustering when the classes are unknown.

There are two stages in classification: in the first stage, the posterior probabilities

are inferred from the data. In the second stage, these probabilities are used to
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make the classification decision, and there are several methods for this process.

The simplest and most common is to minimise risk by maximising the posteriori

probability. Another approach is to consider the cost of misclassification for each

different class, these values are then placed in a loss matrix and multiplied by the

posterior probabilities.

The neural network estimates or rather, models the class conditional densities, the

probability distribution of the vector given the class information. Using Bayes the-

orem, the posterior probability for new unseen values of x can be used to classify

x.

Classification can be either discriminative or generative. Discriminative classifica-

tion methods model the conditional distribution of the class, given the inputs, while

generative classification models the joint distribution of the classes, and prior class

distribution directly. Neural network classification can perform either generative or

discriminative classification. Generative classification uses discriminant functions. If

the network is used to represent a non-linear discriminant function, when presented

with the input vector, the network produces the classification directly [21]. Altern-

atively, the network can be used to model the posterior probabilities of the class

membership.

Whether the generative or discriminative classification approach is chosen affects

the functionality of the neural network and hence the design of it. When modelling

the posterior probabilities, there must be one output per outcome, or class so that

each activation represents the posterior probability of each class. In other words,

each output represents p(Ck|x), where Ck is the kth class and x is the input vector.

The advantage of modelling individual posterior probability of class membership is

that it allows us to compare the posterior probabilities for each outcome, allowing

minimum error-rate decisions to be made.

4.2.1 Decision boundaries and the decision rule

The output of the neural network is the posterior probability, and this needs to

be transformed to a classification decision rule. There are various methods of doing

this, one of which is to accept the class with the highest probability, or the maximum

a posteriori rule.

The rule for minimising misclassification can also be seen in terms of decision regions.

The aim of classification is to assign the points in the feature space to each class.
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The feature space can thus be divided into decision regions, with the boundaries

separating the regions termed the decision boundaries. The design of a classifier

aims to find the optimal placement of these boundaries to minimise misclassification.

4.2.2 Density Estimation

The neural network estimation of the probability density is a combination of the

parametric and non-parametric methods, semi-parametric approach. Parametric

methods assume specific functional forms of the density, and require optimisation

of the parameters to fit the data. The problem with this method is that the chosen

function may not be able to model the distribution accurately. Conversely, non-

parametric methods model the density purely based on the data, and the problem

is that the model may become too complex, with many parameters.

The semi-parametric method starts with a general function, and parameters con-

trolling complexity of the model can be controlled independently of the dataset.

Neural networks are an example of the semi-parametric method, and exhibit good

scaling properties with larger datasets, this helps keep complexity of the model to a

minimum, aiding in generalisation.
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Chapter 5

Missing Data Estimation

Missing data is often a problem associated with survey and medical data [39].

Some reasons for omission are: data entry errors, non-response of participants and

inapplicable responses. The reason missing data is such a problem is that statistical

methods cannot perform where there is missing data. Depending on the extent to

which it is missing, missing data can completely alter the nature of the data.

There are two ways of dealing with missing data, either deletion or imputation.

Deletion is infeasible if there is a substantial amount of missing data. Imputation

is the process of estimating missing data of an observation based on valid values of

other variables. The current methods for imputation rely mainly on averages, or

finding similar cases in the data to substitute with.

The ability to infer missing data from a particular dataset depends on the reason

the data is missing. Different types of missing data were introduced by Rubin [39]:

Missing at Random (MAR), Missing Completely at Random (MCAR), and non-

ignorable. MAR data occurs when the distribution of missingness does not depend

on the missing data, but only on the observed data. This also known as the Ignorable

response, since this data may be predicted or found from data within the set. When

the distribution does not depend on either the missing data nor the observed data,

it is the special case of Missing at Random, Missing Completely at Random [40].

The Non-ignorable non-response is when data is missing not at random. In other

words, the distribution of missing data is dependent on the missing data itself. The

assumption in this study is that all the data is MCAR, since MAR data is non-

ignorable and unpredictable.

MCAR data relies on the interrelationships between the known values. One way

of discovering these interrelationships, is to use neural networks, which are able to

derive relationships in complex data [21].
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5.1 Method

The method used to approximate the missing clinical survey data is based on one

method developed by Abdella and Marwala [19], in which an auto-associative neural

network is trained to model the complete data. This type of MLP predicts the same

inputs as the outputs. While this may seem redundant on a complete data set,

when the input is incomplete, the auto-associative network is used to predict those

missing entries. In the case of missing data, the input to the network consists of

the partial set of inputs (held constant) and an initial guess of the missing inputs

(variable). The neural network then predicts the output according to the dataset

characteristics, hence the output of the trained network should approximate the

input. The missing inputs are varied until the set of inputs closely resembles the

set of outputs. In other words, the aim is to minimise the difference between the

predicted values at the output of the network, and the applied input. This can be

seen as Least Squares Constrained Optimisation, a minimisation of the least squares

error function.

There are two main types of methods of optimisation: gradient methods, and

stochastic methods. Both types of methods were investigated, and it was found

that the most efficient gradient based methods are second order, with the secant

method being the most efficient. However, the stochastic methods have a much

shorter computation time and have higher probabilities of finding global solutions,

and this report focuses on this type of optimisation. Since each entry represents

an individual multivariable optimisation problem, total execution time is a critical

performance measure, as on the survey data set used in the study 284 out of the

3381 cases were incomplete. Several stochastic methods were tested, namely genetic

algorithm, particle swarm optimisation, and simulated annealing. Of these different

methods, particle swarm optimisation executed and converged in the shortest time.

The system consists of two main parts: the first is the auto-associative neural net-

work discussed in Section 5.2, and the second is the optimisation algorithm in Section

5.3. Thus, the performance of the system depends on two factors:

1. the ability of the neural network to accurately predict the output

2. the ability of the optimisation algorithm to find a global minimum

46



5.2 The Auto-associative neural network

An MLP with the same number of inputs and outputs as there are variables in the

dataset is trained on a full dataset, where there are no entries missing. The weights

and biases are hence fixed for the network to be able to predict itself.

The output (Y) of the neural network can be written as follows:

Ỹ = f(X̃, W̃ ) (5.1)

Where X̃ is the input vector, and W̃ is the vector of weights.

The performance of the auto-associative neural network is dependant on the archi-

tecture and training. Since the maximum number of hidden nodes permissible is the

number of inputs and outputs, it was possible to design the network by trial and

error, as the upper limit on nodes is 13.

5.3 Least Squares Error Optimisation

5.3.1 Least Squares Error Function

The error function, or objective function is the sum of squared difference between

each corresponding input and output.

E =
N∑

n=1

(X̃ − Ỹ )2 (5.2)

Substituting Y from equation (5.1), the error is:

E =
N∑

n=1

(X − f(X̃, W̃ ))2 (5.3)

Since some data is missing, X̃ can be split into the known elements (X̃k) and the

unknown elements (X̃u). Rewriting equation (5.3) [19]:

E =
N∑

n=1







X̃k

X̃u



− f







X̃k

X̃u



 , W̃






2

(5.4)
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5.3.2 Gradient Optimisation

Gradient of the error function

The gradient is calculated for the missing variables only, that is, the derivative of

the error function with respect to the missing variables only. Although the input

and output vectors can be categorised as known and unknown terms, for simplicity

the gradient of the error function is defined with the entire X̃ and similarly for Ỹ .

For the ith input, the gradient of the error is shown in equation(5.5).

∂E

∂xi
=

N∑

n=1

2
(
X̃ − f(X̃, W̃ )

)( d

dxi
X̃ −

(
∂y1

∂xi
+ . . . +

∂yn

∂xi

))
(5.5)

Since X̃ is a vector of constants, the derivative of X̃ with respect to any of the

missing variables will be 1, for that specific component in X̃. Thus, the gradient is

simply:

∂E

∂xi
=

N∑

n=1

2
(
X̃ − f(X̃, W̃ )

)(
1 −

(
∂y1

∂xi
+ . . . +

∂yn

∂xi

))
(5.6)

To obtain the partial derivatives of y the Jacobian of the system function must be

calculated. In this case y refers to the output vector Ỹ , so the derivative of each

component of Ỹ with respect to each missing variable must be solved for. The

calculation of the neural network Jacobian is done by backpropagation [27].

The Jacobian is defined by:

Jki =
dyk

dxi
(5.7)

Starting at the output, from equation(2.4), defining the output at a linear activation

function, the derivative of yk with respect to the input xi is:

dyk

dxi
=

da
(2)
k

dxi
(5.8)

The output activation of the second layer is expressed as a function of the trans-

formed activations from the hidden layer, zk. From equation(2.3) a
(2)
k = f1(zk).

These transformed activations in the hidden layer are a function of the activations

from the input layer to the hidden layer a(1). From equation (2.2), zk = f2(a
(1)).

Similarly, moving further backward, the first layer activations are a function of the

inputs xi, a
(1)
i = f3(xi).
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The Chain rule is used:

da
(2)
k

dxi
=

da
(2)
k

dz

dz

da
(1)
j

da
(1)
j

dxi
(5.9)

Differentiating the activations in the second layer, equation (2.3), with respect to

the outputs z from the hidden layer gives:

da
(2)
k

dz
=

h∑

j=1

w
(2)
kj (5.10)

Differentiating the output hidden activations, equation (2.2), with respect to the

activations at the hidden layer a(1) gives:

dz

da
(1)
j

= sech2(a
(1)
j ) (5.11)

Using the identity sech(a)2 = 1 − tanh(a)2, equation (5.11) becomes:

dz

da
(1)
j

= (1 − tanh(a
(1)
j )2) (5.12)

The first layer activations differentiated with respect to the input xi

da
(1)
j

dx
=

n∑

i=1

w
(1)
ji (5.13)

The final equation for the Jacobian is thus as follows:

dyk

dxi
=

h∑

j=1

w
(2)
kj (1 − tanh2(a

(1)
j ))

n∑

i=1

w
(1)
ji (5.14)

Where: a
(1)
j is given by equation(2.1).

The Jacobian for the neural network is substituted into equation(5.6). For a problem

with m missing variables, the gradient will be a vector of length m. Only the

derivatives of y with respect to the missing variables will be calculated.

To approximate the gradient, each component of the derivative is obtained by per-

turbing one missing variable by a finite difference.

Optimisation Methods

General purpose optimisation algorithms in the Netlab toolbox were used: scaled

conjugate gradient, conjugate gradient, quasi-Newton, and gradient descent. The

secant method is derived from the quasi-Newton method.

49



More detail on these gradient based optimisation algorithms is supplied in Appendix

C, with the performance testing on the implementation of the methods for missing

data approximation in Appendix D.

5.3.3 Stochastic Optimisation

Methods

The different stochastic optimisation algorithms that were investigated are: particle

swarm optimisation, genetic algorithm, and simulated annealing. The theory behind

particle swarm optimisation and genetic algorithms is in Section 3. Simulated an-

nealing was investigated but was not as successful as the particle swarm optimisation

method, and the theory is found in Appendix E. The results from the investigation

into various stochastic optimisation methods for multivariable optimisation in miss-

ing data approximation is in Appendix F.

Simulated Annealing

Consistent results were obtained for this method, but it is computationally intensive,

and the execution time is greater than all the other methods. The major disadvant-

age of simulated annealing is that the optimisation is performed on one solution.

In contrast, the GA and PSO optimise many solutions, and this speeds up the op-

timisation. To counteract the possibility of an incorrect initial temperature, several

annealing runs were carried out. However, these are performed serially, hence the

execution time is much longer than that of the other methods. In addition, each

annealing run has a longer convergence time, due to the slow cooling schedule.

Genetic Algorithm

The mutation rate had a more pronounced effect on the accuracy than the crossover

rate or population size. The precision of the solution is not as important as evalu-

ating much of the search space, as due to the rounding of the solutions, precision is

lost anyway.
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Particle Swarm

The PSO success can be attributed to the group interaction and search space is

effectively broken down into areas covered by each agent. Since the algorithms

produce similar results in terms of accuracy, the most efficient algorithm is the

particle swarm optimiser, with an execution time of 35% of the time required by

the GA. The second part of the testing is performed on unseen testing data, with

varying number of variables missing.
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Chapter 6

Implementation

6.1 Neural Network Classifier

The steps involved in designing a classifier are:

1. Data Collection and Processing: The survey data used was collated and pro-

cessed to make it suitable for neural network training

2. Feature Choice: Since there were few distinct features present in the data, all

features were used. This could be done because although the neural networks

do not eliminate unecessary features altogether, they adjust to the data by

assigning larger weights to more relevant features.

3. Model Choice: This step involves the design of the neural network architec-

ture. Several different architectures (MLP and RBF) and training methods

(Maximum likelihood training, and variants of Bayesian Regularisation) were

investigated in this study. A GA was used to select the parameters for training

and the architecture of an MLP.

4. Training Evaluation: Performance of the classifier depends on its ability to

model the data correctly with the ability to generalise. Assessment of classi-

fication accuracy was made with the Receiver Operating Characteristic.

The data was provided by the South African Department of Health in spreadsheet

format, and was processed in MATLAB. The neural networks were also simulated

in MATLAB, using the Netlab Toolbox.

52



6.1.1 Data Processing

Data Source

Demographic and medical data came from the South African antenatal seropreval-

ence survey of 2001. This is a national survey, and any pregnant women attending

selected public health care clinics participating for the first time in the survey were

eligible to participate. Anonymity is guaranteed. The antenatal seroprevalence sur-

veys are used as the main source of HIV prevalence data worldwide, reasons for

this are that antenatal clinics are found throughout the world, and pregnant women

are ideal candidates for the study as they are sexually active. Antenatal refers to

the pregnant women and seroprevalence is the level of a pathogen in a population,

measured in blood serum. Information was obtained using a questionnaire, and the

HIV status of the patient was measured using a enzyme linked immunosorbent assay

(ELISA) test.

Missing Data

Out of a total 3381 cases, 3097 complete cases were selected, and the incomplete

entries were discarded. An alternative to omitting data is to approximate it, and

this system is discussed in Section 6.2.

Variables

The variables obtained in the study are: race, region, age of the mother, age of

the father, education level of the mother, gravidity, parity and HIV status [41].

The qualitative variables such as race and region are converted to binary values in

order to prevent placing an incorrect importance on these variables had they been

coded numerically. The age of mother and father are represented in years. The

integer value representing education level represents the highest grade successfully

completed, with 13 representing tertiary education. Gravidity is the number of

pregnancies, complete or incomplete, experienced by a female, and this variable is

represented by an integer between 0 and 12. Parity is the number of times the

individual has given birth, (for example, multiple births are counted as one) and

this is not the same as gravidity. Both these quantities are important, as they show

the reproductive activity as well as the reproductive health state of the women.

The HIV status is binary coded, a 1 represents positive status, while a 0 represents
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Table 6.1: Summary of Input and Output Variables

Variable Type Range

Input variables

Region: A Binary 0-1

Region: B Binary 0-1

Region: C Binary 0-1

Age Integer 15-49

Race: African Binary 0-1

Race: Coloured Binary 0-1

Race: White Binary 0-1

Race: Asian Binary 0-1

Education Integer 0-13

Gravidity Integer 0-12

Parity Integer 0-12

Age of father Integer 15-54

Output variable

HIV status Binary 0-1

negative status. Thus the final number of input variables is 12, shown in Table 6.1.

There is one output.

Outliers

Age is the only variable with outliers. The standard age bracket used in demographic

studies relating to female fertility is 15-49 in African countries, and this was used

to extract outliers in mother’s age. The mean difference in age between mother and

father is 5 years, and the upper limit on age of the father is thus 54. The data is

partitioned into 3 sets, training, validation and testing.
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Dataset biasing

The training set is balanced to consist of an equal number of positive outcomes as

negatives, by duplicating the positive entries. An alternative to oversampling the

minority class is to assign distinct costs to training examples, or by undersampling

the majority class [42]. Due to the limited size of the dataset, over sampling

the positive cases was used rather than undersampling the negative cases. The

original training set consisted of 309 positives and 723 negatives. Neural networks

are trained to model the statistical properties of the data, and had the neural network

been trained on this biased dataset, the predicted outcome would always have been

negative. This data was randomised and the inputs were scaled between -1 and 1.

There are 1416 entries in this set. The validation and testing sets each contain 1027

entries.

6.1.2 Model Selection

Details of the investigation into different design and training methods may be found

in Appendix A. The results show that the MLP is a more successful classifier than

the RBF. The classification ability for the maximum likelihood trained MLP is mar-

ginally greater than other methods, but these findings were inconclusive, as the

combinations of design parameters was insufficiently, covered to varying degrees for

the various methods. Since the Bayesian method of training provides a structured

approach to solving for weights and hyperparameters, this method was further in-

vestigated, using a Genetic Algorithm to automate the selection of the training and

architecture parameters, as discussed in Section 6.1.2. The evidence procedure was

selected over the Markov Chain Monte Carlo (MCMC) and Hybrid Markov Chain

Monte Carlo (HMC) methods, since it is an approximation to the marginalisation

procedure, reducing computation time and expense. Details on the theory behind

MCMC and HMC is provided in Appendix B.

The Evidence procedure was applied using Netlab [27]. The number of weight op-

timisations is controlled by a the number of outer loops, and each weight optimisation

consists of a number of evidence re-estimations controlled by the number of inner

loops. The weights are optimised with a Bayesian error function, and the hyper-

parameters are re-estimated using the evidence procedure. The network produced

contains weights set to a minimum in the error surface, and the hyperparameters α

and γ are set to optimal values.

The algorithm of the evidence procedure is as follows [27]:
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1. Initialise the hyperparameter α and the weights.

2. Train the network using scaled conjugate gradient optimisation method to

minimise S(w) of the Bayesian error function in Equation 2.29.

3. When a local minimum is found on the Bayesian error surface, evidence for the

hyperparameter α is computed, and iteratively re-estimated using the Gaus-

sian approximation.

Genetic Algorithm

A Genetic Optimisation Toolbox [33] was used for the implementation of the GA.

The encoding of the algorithm is that each individual of the population represents

the design and parameters of the evidence estimation procedure, of a Bayesian neural

network. Genes represent the number of hidden nodes, the number of outer loops,

and the number of inner loops. Two approaches to the fitness function were used:

minimisation of prediction error (MSE), and maximisation of the area under the

ROC curve.

The algorithm maximises the function, so the objective function is multiplied by

factor of -1 to perform minimisation. Selection of the number of generations and

population size was done to maximise exploration of the search space, while sim-

ultaneously maximising accuracy. Crossover produces new solutions, and together

with selection ensures that more accurate solutions are found. Mutation is required

to ensure the population does not converge prematurely. There is a trade-off between

the evolution and the time taken to perform the calculations, more generations al-

lows for more mutation and crossover, but this takes time. The parameters are

adjusted to minimise the error without the population converging prematurely. Al-

though limited crossover and mutation will ensure a slow and steady decrease of the

error, there is a trade off in the time taken for a slower evolutions to execute.

The parameters used are:

• Selection: Normal Geometric

• Population size: 20 individuals

• Maximum number of generations: 100

• Crossover: 12 individuals per generation using arithmetic crossover
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• Mutation: 16 individuals per generation using all methods of mutation, (refer

to Section 3.1 of Chapter 3)

6.1.3 The ROC Curve

There are two methods for plotting the ROC curve, in the simple method, different

thresholds are used to calculate the true positive and false positive ratios. The lim-

itation is that since only a finite number of thresholds can realistically be calculated,

points are omitted. The second method ranks test instances according to the score

(probability) in descending order. Starting at (0,0), if the ranking is positive moves

a step 1/pos up, else if the ranking is negative, moves to the right by an amount

1/neg. The second method is implemented in this study, since the local concav-

ities are smoothed by the first method of plotting, and these concavities indicate

performance as explained in the previous section.

There is a trade off between sensitivity and specificity, and in this study equal

importance was given to both properties. Given classification costs for either class,

the optimal point could have been chosen to minimise a specific cost. The optimal

operating point is on the convex hull of the curve, and the optimal accuracy is

calculated at this threshold value. The minimum criteria for the selection of the

operating point is that the true positive rate is greater than 0.5 and false positive

rate is less than 0.5. The area is calculated using trapezoidal integration.

6.2 Missing Data Estimation

The numerical data values were estimated using the particle swarm optimisation

algorithm, but for the categorical variables such as race and region this was not

necessary. Instead, each option was tested, and the one resulting in the lowest error

was selected as the best aproximation.

6.2.1 Constraints and scaling

The data used to train the MLP optimisation is scaled between 0 and 1 to ensure

that the weights are of order unity. The importance of an input is proportional to

the size, since the activations are a sum of the inputs. It is thus important that all

data have similar ranges.
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Scaling is also important in optimisation. If variables are of different orders of

magnitude, the problem may be insensitive to variations in one or more of the

variables, and the objective function contours will be distorted due to poor scaling.

Any optimisation algorithm will struggle to converge to the true solution in this

situation. The reason distorted contours poses such a problem, is that this causes

difficulties in selecting the step length for the numerical gradients [43]. This is

particularly evident in the gradient descent method.

Since the data is scaled between 0 and 1, the constraints are simply: xi < 0 and

xi > 0.

6.2.2 Objective function

The objective function is the mean square error of the potential solution. The

parameters to be optimised are the missing data entries. Since the number of missing

entries varies from case to case, the number of parameters varies as the number of

missing variables varies.

6.2.3 Method

Data Processing

The data for 2001 is filtered to remove partial entries, and outliers are removed to

aid in neural network training. The two age variables were used as the basis for

entry removal according to a 3 sigma standard deviation. This corresponds to the

standard for demographic studies relating to female fertility where the age group is

15-49, and the age group for men was taken to be 18-51.

The full set is partitioned into training, validation and testing data. Originally, the

training set was balanced to have an equal number of HIV positive outcomes and

negative outcomes. This distorted the dataset to contain many more entries where

the ages were nearer to the mean. The result was that the network was unable to

correctly predict ages in the brackets (15-20) and (35+). The final training set thus

represents the distribution of outcomes of the entire data set.
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Neural Network

Correlation co-efficients were found for each variable in relation to the others. The

variables each depend on different sets, but when combined the total dependence

was on all the variables. As a result, when optimising several missing variables, it is

not possible to remove any inputs. The auto-associative network thus takes all 13

variables as input with 12 hidden hyperbolic tan nodes and linear output nodes was

found to produce the lowest training and validation error. Training was performed

by the scaled conjugate gradient method for 1000 cycles.

6.2.4 Optimisation Algorithm

There are two parameters in the Particle Swarm Optimisation: the swarm size and

the number of iterations. The members of the initial swarm are random particles

within the bounds of the parameter search space. A swarm of 15 particles adequately

covered the search space and converged to an optimum in under 300 iterations. The

algorithm could be improved by improving local neighbourhood information, as the

swarm diverged from the optimum initially, and reduced the error function only

slightly.
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Chapter 7

Results and Discussion

7.1 Classification

The best architecture selected by the GA is an MLP with 26 hidden nodes, trained

for 100 training cycles using the scaled conjugate gradient optimisation technique.

The evidence is re-estimated 3 times after each set of 100 training cycles to improve

the estimation of the hyperparameters. This re-estimation process was performed

5 times. The fitness of the network is based on the area under the ROC as well as

the classification accuracy. The average fitness of the population of 20 individuals

converges at the highest fitness value after 30 generations, as shown in Figure 7.1.

To evaluate the accuracy of this prediction, an ROC curve was derived. If the

network is to be used directly for classification, then the threshold for creating a

binary decision from the probability can be adjusted, as discussed in the following

subsection.

7.1.1 Threshold adjustment

The neural networks are trained to predict a binary outcome, 1 for HIV positive and

0 for HIV negative. The result from the neural network, however, is a continuous

value between 0 and 1 and this needed to be hard-limited to either 0 or 1. This

was achieved by rounding the output to 1 if greater than a threshold and rounding

it to 0 otherwise. The confusion matrix was calculated initially for a threshold

of 0.5 on the training data, and this value was adjusted until the ratio of false

positives to false negatives was approximately 1. Since the data set consisted of equal

positive and negative outcomes, the classifier should produce equal false positive
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Figure 7.1: Improvement of Area Under ROC as fitness using GA

and false negative results, such that it is not biased toward predicting either case,

in other words, specificity and sensitivity have equal importance. The networks

were optimised for a unity false positive to false negative ratio. Using this adjusted

threshold, validation and final testing are limited at 0 or 1. It is incorrect to adjust

the threshold on the validation set, since this set is not balanced.

The best performing MLP network has a training AUC of 0.7385 and a validation

AUCof 0.6701, as shown in Figure 7.2.

With an initial threshold of 0.5, the accuracy is 68% on training, but the number

of false negatives (277) exceeds the number of false positives (169). The number of

true positives is 539 and there are 431 true negatives. Shifting the threshold to 0.53

results in a better balanced classifier, with 242 false negatives and 210 false positives.

The best performing RBF network has a validation ROC area of 0.6319. The initial

threshold gives 276 false negatives and 246 false positives, so the threshold is shifted

to 0.51, resulting in 257 false negatives and 266 false positives ontraining. There are

22 hidden nodes and the activation function is thin plate spline.

SimpleAcc =
TP + TN

TP + FN + FP + TN
(7.1)

and
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Figure 7.2: ROC for validation data using MLP

GeometricAcc =

√
TP × TN

(TP + FN) × (FP + TN)
(7.2)

7.2 Missing Data Estimation

Three aspects were tested:

1. The ability to predict different variables

2. The ability to estimate the data missing from the original dataset, (ability to

predict combinations of missing variables).

3. The effect of the number of missing variables on the ability to predict missing

data

7.2.1 Prediction of single missing variables

On a set of 200 complete entries, each variable was omitted and estimated using the

particle swarm optimisation algorithm. The accuracy of prediction is given in Table

7.1
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Table 7.1: Prediction of individual variables

Missing Variable mse max min rmse

Father’s Age 25.285 12 19 4.005

Education 12.675 10 9 2.735

Mother’s Age 20.95 12 17 3.53

Gravidity 0.685 6 -2 0.385

Parity 0.47 2 -1 0.33

The predictions are in an acceptable range of error. Although the maximum and

minimum errors appear to be quite high, these occur for outliers, and this is illus-

trated in the histogram of errors.

7.2.2 Prediction of multiple variables

Tests were performed on cases with 1,2,3 and 4 missing values. Since the most

efficient algorithm was found to be the secant method, this method was used for

optimisation. The test data consists of 10 entries, and the data set is completely

separate from the training data (as used previously). Different numbers of variables

were removed each time.

The optimisation algorithm was run 5 times with different initial values. Different

initial values had little effect on the solution in the first test, proving it to be robust.

Discrepancies arise in the rounding of the solution, as all data are integer values.

The best estimation of variable 12 are presented in Table 7.2.

The predictive ability is illustrated in Figure 7.3

The largest error is 15 years. The largest errors occur for the higher values, and it is

suspected this is because there are fewer samples with the higher age values. More

samples are needed to verify this.

error =

√∑n
i=1 (xi − x̃i)2

n
(7.3)

This error is shown in Table 7.3 for the different number of missing variables. The

error increases significantly when the third and fourth variables are removed. This

increase is attributed to the fact that the third missing variable, the mother’s age,
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Table 7.2: Effect of number of variables missing per entry

No. missing variables

Data 1 2 3 4

41 52 51 54 56

21 23 24 24 21

61 50 48 54 56

40 35 32 33 34

20 22 22 24 21

32 31 31 27 25

36 36 37 34 36

30 30 30 31 31

20 22 22 19 16

30 25 25 26 25

is strongly correlated to the missing variable, the father’s age. When the fourth

variable is removed, the error decreases. It is expected to either equal the error for 3

missing variables, or increase, since less information is given to the neural network.

This also means that there are more variables to optimise.

It is thus insufficient to test the performance on the number of missing variables

alone. The combinations of missing variables is important, so correlation of variables

must be analysed.

Table 7.3: Effect of number of missing variables

No. missing variables 1 2 3 4

error 3.2 3 4.3 3.9

7.2.3 Prediction of a combination of different variables

As the aim of the experiment is to approximate actual missing data, the simulated

missing data represents the proportion of variables missing from the actual initial

dataset. Cases of a single missing variable occurs most often for variable 12, the

age of the father (153 cases out of 3381), then education level (53 cases out of 3381)

variable 9. Cases of multiple variables missing occur most often for a combination

of variables 4,9,10,12 (80 cases). There are therefore 4,53% entries with just the
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Figure 7.3: Predictive ability for variable 12 (Father’s age)

father’s age missing, 1.57% of the entries with education missing, and 2,37% with

multiple variables missing. On the test set of 1027 entries, the simulated quantities

are: 47 entries with age of father missing, 16 with education missing, and 24 entries

with multiple missing variables.

Fifty entries of the testing set were approximated using the PSO optimiser, and the

results are summarised in Table 7.4. The missing variables are Mother’s age (years),

Education level (grade), Gravidity (number), and Father’s age (years). RMS error

is calculated using Equation (7.3). The lowest error is 0 for all entries, but both the

maximum and minimum errors are shown to illustrate the range of errors.

The error on predicted age of the father is too high to be used for actual imputation

of health data, since the age brackets in fertility related studies are 5 years. However,

since the ages of the mother and father are strongly correlated, it may not be possible

to infer the age of the father without the age of the mother. In the case of 2 missing

variables where the age of the mother is present, the accuracy of the prediction of

the age of the father is acceptable. The age of the mother is accurate to within 5

years for all numbers of missing variables tested. The education level inaccuracy

could be acceptable, but a distinction should be made between primary, secondary

and tertiary education, since a 3 grade inaccuracy within any of these education
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Table 7.4: The effect of missing data for approximation using the PSO algorithm

No. missing Error Mother Education Gravidity Father

4 RMS 4.6562 3.1432 0.6782 5.8897

Max 12 6 1 14

Min -9 -12 -2 -11

3 RMS 4.1905 2.884 5.8292

Max 8 10 14

Min -8 -9 -12

2 RMS 2.7928 4.8990

max 5 14

min -12 -11

1 RMS 4.8642

max 12

min -11

levels has a significantly lower effect than if the error is across education levels.

7.3 Effect of Estimated Data on Classification

7.3.1 Single Missing Variable

Each variable from the complete set of 200 entries was omitted and approximated,

and this data was used to predict the probabilistic outcome. The area under the

ROC curve for the same complete set of 200 entries is 0.6004. The probabilities

follow those produced using complete data, and this is shown in Figure 7.4.

7.3.2 Combination of Missing Variables

In the original data set, the most frequently occurring missing variable is the Father’s

age. The different proportions of the different variables was observed in the actual

missing data, and replicated in the simulated missing data, as discussed in Section

7.2.3. This simulated missing data was used in classification and is compared to the
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Figure 7.4: Predicted probability for approximated data (single variable)

Table 7.5: Effect of approximation of data on classification

Missing Variable AUC

Father’s Age 0.5895

Education 0.5916

Gravidity 0.5974

Mother’s Age 0.6000

Parity 0.6075

Region 0.5377

results obtained from the same complete data.

Substituting the approximated data into the complete dataset, with 90 entries con-

taining missing data and the remainder containing complete entries results in an

AUC of 0.6520 while the AUC on the same set with complete data is 0.6566. The

difference in area is marginal, and the ROC of the classifier, seen in Figure 7.6 using

approximated data is very similar to that obtained with complete data in Figure

7.2.

The ROC curves were also generated for the data set consisting of the 90 entries

of approximated data only. The performance of the classifier using approximated

data differs significantly, with an AUC of 0.5427, compared to the AUC on complete

data of 0.5885. For the threshold of 0.525, accuracy is 40% with 29 True Positives,
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0 False Positives, 20 True Negatives and 21 False Negatives. The complete data on

the same threshold gives an accuracy of 56.667% with 11 True Positives, 18 False

Positives, 40 True Negatives, and 21 False Negatives. The predicted probability on

approximated data is always higher than the threshold, resulting in the classifier

predicting that each entry is positive.

The area under the curve gives an idea of the classification ability based on the clas-

sification of the whole data set. The predicted probability using the approximated

data differs greatly from the predicted probabilities on the corresponding complete

entries, with an MSE of 0.1489. Figure 7.7 shows that the predicted probability

using approximated data is much higher than the prediction on complete data. The

average probability is 0.7398, while on the complete data it is 0.4255.

68



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.6: ROC for classifier using approximated dataset

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Point

P
ro

ba
bi

lit
y 

of
 R

is
k

Approximated Data
Complete Data

Figure 7.7: Predicted probability for approximated data (multiple variables)
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Chapter 8

Conclusion

Artificial intelligence methods can be used for classification. In this study, super-

vised learning was used to train multilayer perceptrons and radial basis function

networks to classify the HIV status of an individual, given certain demographic

factors. Various aspects of data processing such as scaling and variable transforma-

tion are discussed. Using the maximum likelihood method of training, the problems

encountered are that different weights are obtained from different training sets, and

the weights are also dependant on the order of the data entries in the training set.

To overcome this, a validation set of data is required to optimise the design of the

network. This involves setting the regularisation parameters and the complexity of

the network, set by the number of hidden nodes. The best network is chosen ac-

cording to the lowest standard error between targets and predicted outputs, but the

design process is time consuming since there are many permutations of parameters.

The uncertainty in the weights is captured by a probability distribution in the

Bayesian framework. Hyperparameters representing the regularisation constants

are determined empirically, and thus the Bayesian method is a more efficient design

process. The number of hidden nodes, training cycles, and initial values for the

hyperparameters must still be determined for this method, and these values are

determined by trial and error. For the neural networks, maximum likelihood and

Bayesian methods were used for training, and the theoretical basis for these meth-

ods is discussed in this report. Bayesian theory provides confidence intervals of the

predictions, which in the case of classification manifests as the moderated or mar-

ginalised output. Performance metrics such as the area under the ROC curve, and

both simple and geometric accuracy are used. Design of classifiers involves setting

a threshold value to convert a probabilistic output to an actual classification. This

value was determined by observing the ROC curve, and in this study, was set such

that equal importance was given to sensitivity and specificity.
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The results show that all neural network architectures produce similar results, but

the neural networks trained with the Bayesian technique have marginally better

accuracy and larger areas under the ROC curve. The average accuracy is between

61 and 62%, proving that demographic data is not sufficient to accurately predict

HIV status, and this value is inadequate for medical classification. It is recommended

that different input features be tested, as well as automatic relevance detection to

assess which inputs contribute to the output. By observing these features, it would

be easier to find additional relevant input features.

Estimation of the missing data did not affect the probabilistic output of the neural

network classifier for single variable estimation, but was unsuccessful for predictions

with multiple variable estimation. The missing data estimation system is thus re-

commended for cases where there is a single variable missing, but not in cases where

there are multiple variables omitted.
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Appendix A

Maximum Likelihood Neural Network Architecture Design

Training

The scaled conjugate gradient optimisation technique is used in error back-propagation

to train the networks.

Number of Hidden Nodes

With the number of input nodes fixed at 12, the upper limit on the number of hidden

nodes was 23, using a factor of 5 for the weights to data points ratio. However, the

ability of the neural network to model the data depends on the nature of the data,

the types of inputs and not just the quantity of training examples available.

Several networks of differing complexity between 0 and 23 hidden nodes were trained

with a regularisation coefficient of 0.01. The networks were selected when a minimum

validation error was reached, in the region where the validation error remained ap-

proximately constant. This method differs from early stopping, since it was ensured

that the network was trained to a constant error, but the training was stopped at

the lowest validation error. Due to random initialisation of the weights, the average

of 5 runs was used to assess the trend.

Weight Decay Constant

The effect of α on validation error is that an increase in α results in the weights being

restricted and hence regularisation of the training. Using the smallest network that

consistently produced the lowest training and validation errors, alpha was optimised.
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The best performing network was selected based on the area under the ROC curve

for training and validation. The value of α is adjusted to ensure that the validation

error decreases as much as possible, before reaching an approximate constant value.

In contrast, with the early stopping method of regularisation, there is little or no

weight decay, and the network is trained until the validation error starts to increase.

The optimisation of the regularisation coefficient requires that the validation error

is observed as training progresses. With greater complexity(more hidden nodes), a

larger α was required to achieve the same decrease in validation error.

Threshold adjustment

The output is binary: 1 for HIV positive and 0 for HIV negative. The result from

the neural network, however, is a continuous value between 0 and 1 and this needed

to be hard-limited to either 0 or 1. This was achieved by rounding the output to

1 if greater than a threshold and rounding it to 0 otherwise. The confusion matrix

was calculated initially for a threshold of 0.5 on the training data, and this value

was adjusted until the ratio of false positives to false negatives was approximately 1.

Since the data set consisted of equal positive and negative outcomes, the classifier

should produce equal false positive and false negative results, such that it is not

biased toward predicting either case. The networks were optimised for a unity false

positive to false negative ratio. The threshold was adjusted on the training data

to ensure that there was no bias to either outcome, i.e. specificity and sensitivity

have equal importance. Using this adjusted threshold, validation and final testing

are limited at 0 or 1. It is incorrect to adjust the threshold on the validation set,

since this set is not balanced.

One hundred different neural networks were trained and the best classifier on val-

idation data was selected based on the area under the ROC . The best performing

MLP network has a validation ROC of 0.6648. With an initial threshold of 0.5, the

accuracy is 64.48% on training, but the number of false negatives (291) exceeds the

number of false positives(212). The number of true positives is 417 and there are 496

true negatives. Shifting the threshold to 0.53 results in a better balanced classifier,

with 250 false negatives and 258 false positives.

The best performing RBF network has a validation ROC area of 0.6319. The initial

threshold gives 276 false negatives and 246 false positives, so the threshold is shifted

to 0.51, resulting in 257 false negatives and 266 false positives on training. There
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are 22 hidden nodes and the activation function is thin plate spline.

Results

Maximum likelihood approach

The performance comparison is based on classification accuracy and training times.

Although the RBF trains much quicker in 1.975744s than the MLP in 12.197473s,

the accuracy on the RBF was significantly lower than was achieved for the best MLP

network.

A summary of results for the simple networks is given in Table A1.

Table A1: Comparison of MLP and RBF simple classifiers

MLP RBF

Conf. mat. Pred. Pos. Pred. Neg. Pred. Pos. Pred. Neg.

Actual Pos. 436 281 441 276

Actual Neg 106 204 126 184

Accuracy is calculated in two ways, the simple accuracy is the total correct results

expressed as a percentage of total entries, the results are shown in Table A2.

SimpleAcc =
TP + TN

TP + FN + FP + TN
(A1)

and

GeometricAcc =

√
TP × TN

(TP + FN) × (FP + TN)
(A2)

Table A2: Comparison of accuracy on MLP and RBF simple classifiers

Type MLP RBF

Simple 62.32 60.86

Geometric 63.26 60.42

The ROC curves are illustrated in Figure A1.

The results for the auto-encoders are in Figure A3.
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Figure A1: ROC curves for ANNs trained with maximum likelihood techniques

Table A3: Comparison of MLP and RBF auto-encoders

MLP RBF
Conf. mat. Pred. Pos. Pred. Neg. Pred. Pos. Pred. Neg.
Actual Pos. 81 229 95 215
Actual Neg 146 571 186 531

The ability to classify true positive entries as a percentage of total positive entries is

26.13% on the MLP and 30.63% for the RBF. The classifier is clearly biased toward

predicting negative entries, with MLP producing 79.64%, and 74.06% accuracy on

the RBF. Improvement on theses results requires that the auto-encoder be trained

to lower errors, and a larger set of negative entries for training.

Bayesian training of neural networks

Different permutations of number of hidden nodes and training cycles were simu-

lated and the error assessed to determine the optimal parameters for each type of

architecture as well as the training method. A summary of the average for 5 runs of

each configuration are presented in Tables A4, A5, A6 and A7. Although the area

under the ROC curve gives a good indication of classification ability, the areas are

often similar. The curvature is also used to measure performance. The ROC curves
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Table A4: Simulated results for MLP trained with evidence framework

No. of No. of AUC Train Execution Error

hidden training Time Time (%)

nodes cycles (s) (s)

3 100 0.6528 21.422 0.406 0.410906

4 100 0.6523 25.938 0.516 0.400194

5 100 0.6332 30.751 0.688 0.413827

6 100 0.6238 35.313 0.875 0.416748

8 100 0.6124 47.203 1.297 0.433301

4 40 0.6479 13.687 0.531 0.413827

4 60 0.6435 17.812 0.531 0.41481

4 80 0.6495 21.793 0.531 0.403116

are shown in Figure A2. Since the training data has equal probability distributions

of each class, the expected optimal threshold is 0.5, and the accuracy attained for

this threshold indicates performance. Since we have used the naive Bayes method,

the classification score or probability is uncalibrated, and the threshold must be

determined from the data. For a calibrated classifier, the threshold is 1. Calibra-

tion is done by calculating the accuracy for each point, while tracing the curve, and

returning the threshold with maximum accuracy. This process is unnecessary if the

required sensitivity is known, and the aim is then to maximise the specificity, known

as the Neyman Pearson method [44].

Evidence Framework

The best performing MLP has 4 hidden nodes, trained using 100 cycles with the

scaled conjugate gradient optimisation technique. The hidden activation function

is hyperbolic tangent, and the outer activation function is logistic, as was the case

for the network trained with maximum likelihood. The error in Table A4 is the

percentage error using a threshold of 0.5. The optimal threshold was found to be

0.53, determined by examining the ROC for training data. The trade-off is between

sensitivity and specificity, allocating equal importance to both these properties is

achieved by selecting the operating point nearest the point (0,1). The optimal RBF

architecture has 25 nodes, trained for 100 cycles using an initial α and β of 0.01.

The best performing function is thin plate spline. To achieve similar accuracy, the
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Table A5: Simulated results for RBF trained with evidence framework

No. of No. of AUC Train Execution Error

hidden training Time Time 0.5 thresh

nodes cycles (s) (s) (%)

15 100 0.6528 21.422 0.406 0.41091

20 100 0.6254 40.453 0.781 0.4275

25 100 0.6379 74.609 0.906 0.40701

30 100 0.6449 84.265 1.047 0.4148

25 20 0.5407 51.875 0.891 0.47030

25 40 0.6398 97.969 0.922 0.40798

25 60 0.6354 57.11 0.953 0.43428

radial basis function requires more nodes than the MLP, as was noted when training

using the maximum likelihood approach. The training and execution times for RBF

and MLP are quite similar, and as expected, is proportional to the complexity of

the network. The accuracy is very similar for both architectures, although there is

a significant difference in the area under the ROC curves, thus although a higher

accuracy was obtained for the RBF, the MLP is once again a better classifier, and

performs better over a wider range of threshold values. It is possible that a sub-

optimal operating point was selected for the MLP, hence the slightly poorer accuracy.

It is difficult to compare the different architectures though, since it is assumed that

the comparison is between the optimal solutions for both types of networks.

The training times are shorter for similar sized RBF networks than for the MLP

networks, once again, due to the two stage training procedure. However, to achieve

similar size errors, the RBF networks have more hidden nodes, and thus the training

procedure is longer for the RBF networks than it is for MLP networks.

Markov Chain Monte Carlo Training

The optimal MLP trained with the MCMC procedure has 5 hidden nodes, trained

using 1600 samples with 100 omitted, 2000 steps in the trajectory and a persistence

and variance of 0.001. The area under the curve is approximately equal to that

obtained for the MLP trained with the evidence framework, implying that the clas-

sification performance is also similar. However, the final optimal accuracy is slightly
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Table A6: Simulated results for MLP trained with MCMC sampling

No. of AUC Train Execution Error

hidden Time Time (%)

nodes (s) (s)

4 0.6477 4.75 2.031 0.4431

5 0.6513 9.922 4.015 0.4138

6 0.6381 8.687 4.172 0.4304

7 0.6318 9.422 5.141 0.4330

8 0.6125 10.453 4.875 0.4275

less than the MLP trained with the evidence approach. This is due to the selection

of the threshold, illustrating that the area under the curve is a better measure of

classification performance. The training time is much less than for the evidence

approach, but the time taken to execute is much greater in this case.

Hybrid Monte Carlo Training

The optimal MLP trained with the HMC procedure has 4 hidden nodes, trained

using 1000 samples with 100 omitted, 100 steps in the trajectory, a stepsize of 0.002.

Table A7: Simulated results for MLP trained with HMC sampling

No. of AUC Train Execution Error

hidden Time Time (%)

nodes (s) (s)

4 0.6520 304.265 2.188 0.4330

5 0.6469 342.437 2.703 0.4303

6 0.6369 630.312 2.719 0.4206

7 0.6468 645.032 2.703 0.4197

8 0.6228 721.563 3.281 0.4323

The training times are approximately 60 times longer than the MCMC method,

while the execution times are similar. It is expected that the execution times would

be similar, since the implementation requires a forward pass through the networks

with the different weight samples. The advantage of the HMC method over the
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MCMC method is the use of the gradient to ensure that the weights are generated

according to the posterior probability distribution, and this should result in shorter

training times, since less samples are rejected. The longer training times observed

for the HMC implementation are due to the smaller step size. Many more steps

were needed in the MCMC method to generate a representation of the probability

distribution, due to the random walk implementation. The HMC algorithm should

require shorter training times than the MCMC algorithm, but this was not evident

in testing, and could be because only reasonably small networks were implemented.

The classification performance illustrated in the ROC curves in Figure A2 show

that all neural networks trained with the Bayesian framework are very similar. The

greatest area is produced for the MCMC trained MLP, and the ROC curve is also

smoother with greater convexity. Noticeable local concavities are observed on the

RBF network, indicating random performance in those regions. Although the area

is greater than 0.5, indicating some classification ability, the ROC curves are less

than ideal. An ideal ROC response should follow from the point (1; 1) along the line

y = 1, but the actual response diverges from (1; 1) and most points are concentrated

around (0,5; 0,5). This ties in with the results obtained when investigating the auto-

encoders which were unable to detect differences in entries belonging to different

classes. In comparison to the ROC curves for the standard neural networks, the

Bayesian trained networks are much more convex. The standard ROC curves have

pronounced knee in the curvature, indicating the the optimal operating region is

much smaller than that of the Bayesian trained networks.
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Figure A2: ROC curve for Bayesian neural networks
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Appendix B

Markov Chain Monte Carlo Methods

Bayesian methods are computationally intensive due to the integration over multi-

dimensional spaces. Integration is required for the analytical evaluation of the evid-

ences for example, and to use the property of marginalisation, which is a method

to eliminate variables through integration. The Gaussian approximations allow the

integrals to be performed analytically, but in other cases the integration is usually

mathematically intractable. In such cases, the integral is replaced with a finite sum

of randomly sampled points over weight space.

The integrals to be evaluated take the general form:

I =

∫
F (w)p(w|D)dw (B1)

where p(w—D) represents the posterior distribution of the weights, and F(w) is

some integrand. This integral is approximated by a finite sum in the form

I ≈
1

L

∑

i=1

LF (wi) (B2)

where wi is a sample of weight vectors generated from the distribution p(w|D).

The Markov Chain Monte Carlo methods generates the random weight vectors from

a sequence, where each successive vector depends on the previous vector plus a

random component. The simplest method is a random walk.

wnew = wold + ǫ (B3)

where ǫ is a small random vector.

Since the vectors depend on the previous vectors, they are no longer independent.

The goal is to produce vectors representative of the posterior distribution of weights,

86



and these chains of vectors can be produced by Metropolis, Gibbs, and Independ-

ence chains. In Markov chain generation, the design parameters are the number

of iterations, and the number of observed values after convergence. In this study,

vectors are chosen probabilistically according to the Metropolis algorithm. Weight

vectors that result in an increase in the posterior distribution will be accepted ac-

cording to the algorithm, and those resulting in a decrease can be accepted, but

with probability lower than 1. The criteria for acceptance are as follows:

if p(wnew|D) > p(wold|D)

then accept

else

if p(wnew|D) < p(wold|D)

then accept with

probability p(wnew|D)
p(wold|D)

end

Although the Metropolis Algorithm is an improvement on the simple Monte Carlo

method, it is still slow for complex networks [45]. In order to achieve reasonable

acceptance probability, the changes must be small, so a large number of iterations

are required to reach and explore the distribution.

Hybrid Monte Carlo Methods (HMC)

HMC is a modified Monte Carlo method, which makes efficient use of gradient

information to reduce random walk behaviour, speeding up exploration of the weight

search space [46]. The gradient indicates in which direction one should go to find

states with high probability. The HMC uses a Hamiltonian function, which describes

the conservation of energy:

H(q, p) = E(q) +
1

2
|p|2 (B4)

The dynamic moves producing the Markov Chain are obtained by differentiating q

and p with respect to ”time” as follows.

dq

dt
=

∂H

∂p
= p (B5)
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dp

dt
= −

∂H

∂q
= −∇E(q) (B6)

Properties of Hamiltonian dynamics are time reversibility and Liouville’s theorem,

which states that a volume of region space does not change as it evolves, and this

ensures the validity of the procedure [45].

The equations can be discretised with a non zero step size epsilon, using the

”leapfrog” method.

p(t +
ǫ

2
) = p(t) −

ǫ

2
∇E(q(t)) (B7)

q(t + ǫ) = q(t) + ǫp(t +
ǫ

2
) (B8)

p(t + ǫ) = p(t +
epsilon

2
) −

ǫ

2
∇E(q(t + ǫ)) (B9)

The algorithm constitutes the iteration of equations (B7) to (B9), and the number of

iterations is L. These L steps are used to generate candidate weights. The selection

of both L and ǫ involves trade offs: large values of ǫ result in low acceptance rates,

while small values require many leapfrog steps. The the aim in the optimisation

of L is to generate candidates far from the initial state, but near enough for the

computation to be viable [46].

The Hybrid Monte Carlo method can implement other methods of optimisation of

the energy state H, such as simulated annealing, an optimisation method based on

statistical mechanics [45], or Gibbs sampling.
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Appendix C

Gradient Based Methods

All gradient based methods require an analytic calculation of the gradient. A search

direction and step-size provide information about the next solution, this is seen as

travelling in the search space along the surface of solutions. The major downfall

in gradient based methods is that since the calculation of the gradient is local, it

is prone to falling into local minima. This is particularly evident in the gradient

descent method.

Multivariable optimisation can be seen as error surface minimisation. These al-

gorithms are line search descent. The basis for gradient methods is that the fastest

way to locate a minimum is to move along the gradient, which is a vector of direc-

tional derivatives of the error function.[47]

The general algorithm is an iterative process: starting at an initial estimate to the

optimum point x(0), and moving from point x(n)to point x(n+1) along a line, as

shown in equation C1.

xn+1 = xn + λnd̃n (C1)

Where d is the search direction, and λ is the step size.

The general algorithm is as follows[43]:

1. Given a starting point x0 and tolerances (stopping criteria), set n = 1

2. Compute search direction dn

3. Perform a one-dimensional line search in direction dn to give the step length

λn

4. Update the design variables
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5. Test for convergence, based on either change in x, gradient, or value of objective

function

6. n = n+1

The gradient methods differ from each other in the way that the search direction

and step length are calculated. The first order methods, such as gradient descent

and conjugate gradient methods use first derivative information only. Quasi-Newton

and the secant method also require second derivative information.

Gradient Descent

This method is the simplest of the gradient methods since the search direction at

each iteration is simply the negative gradient at that point. The negative gradient is

selected as it will decrease the function value by the largest amount. The equation

for the method is:

xn+1 = xn + λn∇f(xn) + µ(xn − xn1) (C2)

A critical factor of the gradient descent method is the step size. If the step size is too

large, from one iteration to the next, the solution may move backward and forward

over the minimum. If the step size is too small, the solution may never converge.

The step size can be selected by a line search, demonstrated in equation C3.

f(λn) = f(xn−1 + λndn) = minλf(xn−1 + λdn) (C3)

Another weakness is that since gradient is evaluated locally, if the curvature of f

(given by the Hessian) varies significantly with direction (i.e. near a minimum),

then the gradient will not point to the minimum.[27]

To allow the solution to escape local minima, the optional momentum term is added

to the formula.

The characteristic zig-zagging, or oscillatory behaviour is due to the fact that consec-

utive steepest descent directions are orthogonal [43]. As a result, the gradient descent

method is typically slow to converge, particularly when the problem is poorly scaled.

The rate of convergence is linear, but can be quadratic for well scaled problems. Al-

though there is a theoretical proof of convergence, the method usually terminates

far from the solution due to round-off effects.[43] It can also converge to a saddle

point.
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The advantage to this method is its computational simplicity, but the slow conver-

gence, particularly near the optimum means that it is rarely used[47; 48].

Conjugate Gradient

The search directions are the result of orthogonalization of the successive gradients.

The initial point is at x0, and direction d1 given by

d1 = −g(x0) (C4)

The initial search direction is the negative gradient as for the gradient descent

method: gn = −∇f(xn).

xn+1 = xn + λndn (C5)

The new direction vector is the basis of the Polak and Ribiere algorithm, developed

from the method proposed by Hestenes and Stiefel [49; 47]

dn+1 = −gn + βndn (C6)

where βn

βn =
(gn+1 − gn)T (gn+1)

gT
n gn

(C7)

Substituting for g and d:

The new direction vector is

∇f(xn+1) = ∇f(xn) − βn∇f(xn) (C8)

where βn

βn =
(∇f(xn+1 −∇f(xn)))T∇f(xn+1)

∇f(xn)T∇f(xn)
(C9)
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The advantages of the conjugate gradient method are that it eliminates the need to

calculate and store the Hessian matrix (as must be done for quasi-Newton methods).

Secondly, since the conjugate directions are not orthogonal to each other, their

use is an improvement on the steepest descent method where the two consecutive

search directions are orthogonal, causing slow convergence. The disadvantage is

that calculation of the line search requires several additional function evaluations

per step[27].

Scaled Conjugate Gradient

The Scaled Conjugate Gradient technique improves on the Conjugate Gradient as

there is no line search required. The step size is calculated using a formula developed

by Moller[27]. This uses the Hessian, which is approximated using a finite difference

method for computational efficiency.

Quasi Newton

Compared to the first order methods, the Newton methods have a rapid convergence,

due to the inclusion of second order information. However, the main disadvantage

is more computation at each iteration.

Newtons method uses a second order Taylor series expansion of f(x) about the nth

point. It finds the minimum of this quadratic approximation, and and uses this

value to start the cycle again.[48]

xn+1 = xn − H−1(xn∇f(xn) (C10)

where ∇f(xn) = ∂f(x̃n)

∂x̃
, H = ∂2f(x̃)

∂xi∂xj

Although the Newton method is quadratically convergent near the solution, there

are many other disadvantages. One of the main difficulties is that the Hessian and

its inverse must be calculated and stored at each iteration, which is very computa-

tionally inefficient. In addition, formulae from which the second derivative can be

evaluated must be supplied. The method is not always convergent, even if x0 is close

to the solution.

The quasi-Newton avoids computing the actual Hessian by updating an initial posit-

ive matrix (usually the identity matrix) at each iteration. Only the first derivatives

required, and O(n2) multiplications per iteration O(n3) The storage requirement is
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O(n2), which is the same as for Newton’s method, and more than the space required

by the conjugate methods [27]. The advantage over conjugate gradient methods is

there is no need to periodically restart iterations[49].

Convergence is better than for the Newton method as the Hessian, is forced to be

symmetric and positive definite. The most widely used and efficient formulating the

BFGS method

Typically, quasi-Newton methods are used for problems with less than a hundred

variables[27].

Secant

The secant method is based on the Newton method and the quasi-Newton method,

but approximates both the Hessian and the gradient. This gradient approximation

is useful if the gradient is difficult to calculate, or impossible to obtain. One method

of approximating the gradient is the central difference method.
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Appendix D

Gradient Based Methods

Two issues are investigated:

1. The performance of the different gradient methods for solving a single variable

problem (on single variable missing) and for solving a multivariable problem

(multiple variables missing).

2. The effect of the number of missing variables on the accuracy of prediction

The performance of different methods

To evaluate the optimisation methods, it is necessary to estimate the same data

used to train the neural network(as opposed to using the test set). In this way, the

performance of the algorithms can be measured, regardless of the predictive ability

of the network. This is equivalent to comparing the error obtained by substituting

the final solution into the error function. The variables are scaled, so the error would

give no indication of the error of the scaled values. Instead of analysing the scaled

error, the scaled solutions for the missing values obtained by the different methods

are compared. The same network is used to compare results thus this analysis is a

valid way of measuring the efficiency of the algorithms.

The actual performance of the system must be measured using unseen test data, to

check the predictive ability of the network and the data estimation ability of the

system. These two approaches were taken in assessing the performance on both

single variable missing and multivariable missing cases. Testing on the multiple

missing variable case is necessary to determine the most efficient method to be used

in part 2 of the testing(effect of number of missing variables).
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Table D1: Performance on 1 missing variable for training data
initial Grad. Conj. SCG Quasi Secant Value

Desc. Grad New.

13 18.6368 18.6368 18.5120 18.5120 18.6368 18

65 18.7460 18.7460 18.9384 18.7460 18.7460 18

61 18.6368 18.6368 18.8292 18.6784 18.6368 18

37 18.6420 18.6420 18.7252 18.6420 18.6420 18

35 18.7252 18.7252 18.9228 18.9228 18.7252 18

Table D2: Performance on 4 missing variables for training data

initial Grad. Conj. SCG Quasi Secant Value

Desc. Grad New.

23.545 14.066 14.196 14.097 13.956 13.780 16

2.583 3.526 3.641 3.621 3.419 3.499 7

7.245 0.837 0.849 0.831 0.826 0.788 1

27.154 16.104 16.255 16.120 15.964 15.761 18

One aspect of this test is what effect the initial value has on the solution, as shown

in Table D1, the system appears to be insensitive to the initial value. This is because

the objective function is smooth, so there are few or no local minima. Five different

initial values were used: minimum (0), maximum (1), and 3 random values between

0 and 1.

On a multivariable problem, only one case of initial values is shown in Table D2.

The time taken to converge is an effective performance measure, but must be viewed

in conjunction with the error at convergence. Often, methods have short convergence

times and appear more efficient, but actually converge at a much higher error than

others.

Only the full time taken to converge is taken into account, as some methods require

more iterations with shorter iteration times, thus neither iterations nor iteration time

are effective performance metrics. From Table D3 it is clear that the secant method

performs the best in terms of converging at the lowest error, as well as in the shortest

time. The next best performing algorithm is the quasi-Newton method. This is to be

expected, since both these methods are second order and utilise information about

the curvature in the Hessian.

Although the Scaled Conjugate Gradient Method is often faster to converge, it

usually converges at a higher error than the other methods. The worst performance
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Table D3: Performance of different methods on 4 missing values for training data

Metric Grad. Conj. SCG Quasi Secant

Desc. Grad New.

Time 6.812 6.843 4.828 5.359 0.579

Error 1.178e-3 1.047e-3 1.208e-3 1.174e-3 1.040e-3

Time 1.844 1.266 0.61 1.437 0.688

Error 1.138e-4 1.135e-4 1.139e-4 1.155e-4 1.103e-4

Time 2.219 1.718 0.766 1.797 0.484

Error 9.300e-5 9.439e-5 9.252e-5 9.230e-5 9.050e-5

Time 8.5620 8.7490 3.4530 7.4530 1.063

Error 1.479e-4 1.465e-4 1.462e-4 1.460e-4 2.462e-5

Time 2.047 1.531 3.453 1.9060 0.594

Error 7.517e-3 1.385e-3 1.434e-3 1.453e-3 1.090e-3

is that of the gradient descent method, as the time taken to converge is the highest

for this method. This relationship between error convergence with time is best

illustrated in a graph, as seen in the figure below.

The computational efficiency of the algorithms is measured by counting the number

of function and gradient evaluations, illustrated in Table D4. The Secant and Scaled

Conjugate Gradient methods make the fewest function evaluations since they both

approximate the Hessian. The gradient descent evaluates the gradient for each

iteration requiring many iterations before convergence.

Table D4: Number of Function and Gradient Evaluations for one problem (entry)

Method Grad. Conj. SCG Quasi Secant

Desc. Grad New.

# Function 414 313 21 231 53

# Gradient 12 8 41 7 21
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Figure D1: Comparison of convergence rate for different optimisation methods
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Appendix E

Simulated Annealing

Background

The origins of simulated annealing lie in statistical physics, and was first applied

to problems of combinatorial optimisation by Kirkpatrick et al in 1983[50]. It has

since been applied to problems of computer design, image processing, combinatorial

optimisation and artificial intelligence [31]. Statistical mechanics is the study of the

behaviour of large systems of interacting components. In annealing, the system is

composed of atoms in thermal equilibrium at a finite temperature. When referring

to the behaviour of the system, this is taken to be the positions of the particles.

The spatial positions of the components can be grouped as the configuration of the

system, and this is dependent on the energy of the system. For a system in thermal

equilibrium at a given temperature T, the probability πT (s) that the system is in a

given configuration s depends on the energy E(s) of the configuration, which obeys

the Boltzmann distribution, defined in (E1).

πT (s) =
e

−E(s)
kT

∑
ω∈S e

−E(ω)
kT

(E1)

where k is Boltzmann’s constant and S is the set of all possible configurations.

Using a technique developed by Metropolis, a system of particles in thermal equilib-

rium at temperature T can be simulated as the ratio of the probability of the system

being in the next configuration and the current configuration. A future configura-

tion r (at time t + 1)is selected according to the difference between the energy of r

and the energy of the present configuration q (at time t). Using equation (E1), we

obtain (E2).

p =
πT (r)

πT (q)
= e

−(E(r)−E(q))
kT (E2)
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Table E1: Simulated Annealing Optimisation analogues

Concept Physics Optimisation

Function Energy Objective

Configuration Particles Parameters

Aim Low-energy config. Optimal solution

Control parameter Temperature Temperature

A configuration r at t + 1 is automatically accepted if its energy is strictly less than

that of q at t, i.e. if p > 1. Configurations of higher energy can be obtained: if p ≤ 1,

the energy of r is greater than or equal to that of q, the configuration r is accepted

with probability p. As t → ∞, the probability that a system is in configuration s

equals πT (s).

Definition

Simulated annealing is a computational technique for finding globally minimum

cost solutions to large optimisation problems. Annealing is a thermal process for

obtaining low energy states of a heated solid. In the process, the temperature

of the system is first elevated and the gradually lowered, spending enough time

at each temperature to reach thermal equilibrium. Spending insufficient time at

each step reduces the probability of attaining a very low energy configuration. The

optimisation analogues of the physics concepts are presented in Table E1. The

simulated annealing process therefore contains three steps:

• Identify the analogues for the process

• Select an annealing schedule, which consists of a set of decreasing temperatures

and the time spent at each temperature

• Design a method for generating and selecting different configurations

Algorithm

The pseudo code for the basic algorithm is from [51]. T is the initial temperature,

q is the initial state, and M is the length of the Markov chains.
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Parameters

The success of the algorithm depends on the suitable choice of the starting temper-

ature T0, choice of the neighbourhood Sq of the current state q, length of the Markov

chains, specification of the cooling schedule Tk ⇒ Tk+1 and a stopping criterion.

Determination of a Starting Temperature: The starting temperature must be

high enough to ensure that all possible states of the system can be reached, but low

enough to minimise computation time. [51] suggests that in most cases, an appro-

priate starting temperature is related to an average value of the objective function.

Step-size and Neighbourhood: Variable step-size methods can be used if the ob-

jective function is not computationally expensive. If too many function evaluations

are required to calculate a step-size for the present state, it is more efficient to use

a fixed step-size.

Length of the Markov Chains: The length of the Markov Chains determines

how long the algorithm remains at a fixed temperature [51]. Long Markov chains

increase computational effort, while short ones prevent the algorithm from produ-

cing results with acceptable probability.

Advantages and Disadvantages

Simulated annealing eliminates most disadvantages of gradient based methods as

the solution does not depend on initial value. The probability of acceptance of the

new point depends on the temperature, which is another control parameter. On the

otherhand, determining the proper annealing schedule (schedule of temperatures) is

a matter of trial and error. The process is inherently slow, but this can be overcome

by implementing the Simulated Annealing algorithm using parallel processing.
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Appendix F

Evolutionary Methods

The performance of the different methods depends on the degree to which the para-

meters for each algorithm are optimised. For a fair comparison, one parameter,

such as the number of function evaluations should remain constant. Time is also

not necessarily a good indicator of performance, since the amount of processing by

each algorithm depends on the parameters. It must be considered though, since one

of the biggest trade-offs in the design of these optimisers is accuracy versus time.

For example, a longer cooling schedule, more generations, or more iterations in the

particle swarm all ensure more function evaluations and hence take longer, but this

improves accuracy. Function evaluations and times are provided in Table F.2. Ac-

curacy is the basis for comparison in this analysis. Each evolutionary algorithm

is run 50 times on 1 data entries in the training set and consistency of accurate

performance is illustrated by the histograms of error in Figures F.1, F.2 and F.3.

As shown in Table F.1, all methods reach the same optimum. For the purposes
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Figure F.1: Histogram of error for PSO

of approximating the data, since the values are rounded (the data is discrete) all

methods produce acceptable results, so the time becomes the deciding factor.

5 different entries with 4 missing variables were optimised, and the convergence time

with error, total execution time, and function evaluations are summarised in Table

F.2. The error convergence with time characteristic is given in Figure F.4.
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Table F.1: Performance on 1 entry of training data with 4 missing variables

Variable Actual GA PSO Sim. Ann Hybrid

Mother age 29 24.6395 24.6373 24.6320 24.6542

Education 9 9.4746 9.4798 9.4902 9.4565

Gravidity 3 3.1158 3.1176 3.1272 3.1120

Father Age 30 38.1554 38.1593 38.1253 38.1688

Table F.2: Performance on 4 missing variables per entry (training data)

Metric GA PSO Sim. Ann Hybrid

convergence time 36.8462 10.03 65.688 12.719

error 2.4804e-5 2.4803e-5 2.4806e-5 2.4803e-5

function evals 13822 4280 30133 20916

execution time 40.0160 13.359 275.77 177.156

convergence time 37.2304 9.67 64.75 15.828

error 2.4195e-7 5.5332e-7 2.3824e-7 2.3525e-7

function evals 13979 4500 28907 21093

execution time 40.3280 13.281 264.52 175.781

convergence time 31.672 9.25 51.141 15.453

error 2.8656e-6 1.9012e-6 1.9018e-6 1.9012e-6

function evals 11336 4305 30231 20600

execution time 33.1720 13.281 276.53 173.84

convergence time 10.766 8.95 13.703 18.672

error 5.6786e-5 5.6786e-5 5.679e-5 5.6786e-6

function evals 11959 4170 28433 20993

execution time 34.8590 13.266 259.56 175.89

convergence time 34.078 11.343 31.797 43.844

error 7.805e-7 7.8032e-7 7.8244e-7 7.8172e-7

function evals 14259 5160 28222 20877

execution time 41.0470 13.25 261.28 176.36
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Figure F.2: Histogram of error for GA
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Figure F.3: Histogram of error for Simulated Annealing

Simulated Annealing

Consistent results were obtained for this method, but it is computationally intensive,

and the execution time is greater than all the other methods. The major disadvant-

age of simulated annealing is that the optimisation is performed on one solution.

In contrast, the GA and PSO optimise many solutions, and this speeds up the op-

timisation. To counteract the possibility of an incorrect initial temperature, several

annealing runs were carried out. However, these are performed serially, hence the

execution time is much longer than that of the other methods. In addition, each

annealing run has a longer convergence time, due to the slow cooling schedule.

Genetic Algorithm

The mutation rate had a more pronounced effect on the accuracy than the crossover

rate or population size. The precision of the solution is not as important as evalu-

ating much of the search space, as due to the rounding of the solutions, precision is

lost anyway.

Particle Swarm

The PSO success can be attributed to the group interaction and search space is

effectively broken down into areas covered by each agent. Since the algorithms
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Figure F.4: Convergence rates for evolutionary and hybrid optimisation methods

produce similar results in terms of accuracy, the most efficient algorithm is the

particle swarm optimiser, with an execution time of 35% of the time required by

the GA. The second part of the testing is performed on unseen testing data, with

varying number of variables missing.

Hybrid Simulated Annealing-Genetic Algorithm

The convergence rate per run is comparable to the PSO and as seen in Figure

F.4, the convergence rate of the hybrid method is better than both the GA and

the SA, proving that the hybrid method combines the merits of each individual

method. Compared to the PSO, the hybrid method is also more robust, evident in

the accuracy in the results. This robustness is due to the multiple runs executed

in the main SA algorithm, whereas in the PSO only one run was executed. The

multiple executions are also the cause of the lengthy execution times, and this can

be reduced by having fewer runs. This hybrid method is not as dependant on the

initial state as the original SA, so fewer runs can be justified. If accuracy is more

important than the execution time, then the hybrid method is preferable to the PSO.

If however there are time constraints, (as would be the case for large datasets), then

the PSO is preferable, though the hybrid method can be implemented with a single

run to save time.
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Since the PSO is the fastest and most accurate method of the stochastic methods

tested, better results could be achieved by combining PSO and the SA. The im-

plementation would be similar to the hybrid implemented in this study: the PSO

would be used to generate the samples, and the SA can be used to probabilistically

select the following state.
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